STORMWATER MANAGEMENT REPORT

Oak Crest Cove Boat Ramp - Sandwich, MA

November 2023

Cape Cod Boat Ramp Stormwater Retrofit Project Partner: Association to Preserve Cape Cod

Owner/Operator: Town of Sandwich

Massachusetts Department of Environmental Protection Bureau of Resource Protection - Wetlands Program Checklist for Stormwater Report

A. Introduction

Important: When filling out forms on the computer, use only the tab key to move your cursor - do not use the return key.

A Stormwater Report must be submitted with the Notice of Intent permit application to document compliance with the Stormwater Management Standards. The following checklist is NOT a substitute for the Stormwater Report (which should provide more substantive and detailed information) but is offered here as a tool to help the applicant organize their Stormwater Management documentation for their Report and for the reviewer to assess this information in a consistent format. As noted in the Checklist, the Stormwater Report must contain the engineering computations and supporting information set forth in Volume 3 of the Massachusetts Stormwater Handbook. The Stormwater Report must be prepared and certified by a Registered Professional Engineer (RPE) licensed in the Commonwealth.

The Stormwater Report must include:

- The Stormwater Checklist completed and stamped by a Registered Professional Engineer (see page 2) that certifies that the Stormwater Report contains all required submittals.¹ This Checklist is to be used as the cover for the completed Stormwater Report.
- Applicant/Project Name
- Project Address
- Name of Firm and Registered Professional Engineer that prepared the Report
- Long-Term Pollution Prevention Plan required by Standards 4-6
- Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan required by Standard 8²
- Operation and Maintenance Plan required by Standard 9

In addition to all plans and supporting information, the Stormwater Report must include a brief narrative describing stormwater management practices, including environmentally sensitive site design and LID techniques, along with a diagram depicting runoff through the proposed BMP treatment train. Plans are required to show existing and proposed conditions, identify all wetland resource areas, NRCS soil types, critical areas, Land Uses with Higher Potential Pollutant Loads (LUHPPL), and any areas on the site where infiltration rate is greater than 2.4 inches per hour. The Plans shall identify the drainage areas for both existing and proposed conditions at a scale that enables verification of supporting calculations.

As noted in the Checklist, the Stormwater Management Report shall document compliance with each of the Stormwater Management Standards as provided in the Massachusetts Stormwater Handbook. The soils evaluation and calculations shall be done using the methodologies set forth in Volume 3 of the Massachusetts Stormwater Handbook.

To ensure that the Stormwater Report is complete, applicants are required to fill in the Stormwater Report Checklist by checking the box to indicate that the specified information has been included in the Stormwater Report. If any of the information specified in the checklist has not been submitted, the applicant must provide an explanation. The completed Stormwater Report Checklist and Certification must be submitted with the Stormwater Report.

¹ The Stormwater Report may also include the Illicit Discharge Compliance Statement required by Standard 10. If not included in the Stormwater Report, the Illicit Discharge Compliance Statement must be submitted prior to the discharge of stormwater runoff to the post-construction best management practices.

² For some complex projects, it may not be possible to include the Construction Period Erosion and Sedimentation Control Plan in the Stormwater Report. In that event, the issuing authority has the discretion to issue an Order of Conditions that approves the project and includes a condition requiring the proponent to submit the Construction Period Erosion and Sedimentation Control Plan before commencing any land disturbance activity on the site.

B. Stormwater Checklist and Certification

The following checklist is intended to serve as a guide for applicants as to the elements that ordinarily need to be addressed in a complete Stormwater Report. The checklist is also intended to provide conservation commissions and other reviewing authorities with a summary of the components necessary for a comprehensive Stormwater Report that addresses the ten Stormwater Standards.

Note: Because stormwater requirements vary from project to project, it is possible that a complete Stormwater Report may not include information on some of the subjects specified in the Checklist. If it is determined that a specific item does not apply to the project under review, please note that the item is not applicable (N.A.) and provide the reasons for that determination.

A complete checklist must include the Certification set forth below signed by the Registered Professional Engineer who prepared the Stormwater Report.

Registered Professional Engineer's Certification

I have reviewed the Stormwater Report, including the soil evaluation, computations, Long-term Pollution Prevention Plan, the Construction Period Erosion and Sedimentation Control Plan (if included), the Long-term Post-Construction Operation and Maintenance Plan, the Illicit Discharge Compliance Statement (if included) and the plans showing the stormwater management system, and have determined that they have been prepared in accordance with the requirements of the Stormwater Management Standards as further elaborated by the Massachusetts Stormwater Handbook. I have also determined that the information presented in the Stormwater Checklist is accurate and that the information presented in the Stormwater Report accurately reflects conditions at the site as of the date of this permit application.

Registered Professional Engineer Block and Signature

Signature and Date

Checklist

Project Type: Is the application for new development, redevelopment, or a mix of new and redevelopment?

New development

Mix of New Development and Redevelopment

LID Measures: Stormwater Standards require LID measures to be considered. Document what environmentally sensitive design and LID Techniques were considered during the planning and design of the project:

\boxtimes	No disturbance to any Wetland Resource Areas							
	Site Design Practices (e.g. clustered development, reduced frontage setbacks)							
\boxtimes	Reduced Impervious Area (Redevelopment Only)							
	Minimizing disturbance	to existing trees and shrubs						
	LID Site Design Credit F	Requested:						
	Credit 1							
	Credit 2							
	Credit 3							
	Use of "country drainage" versus curb and gutter conveyance and pipe							
\square	Bioretention Cells (includes Rain Gardens)							
	Constructed Stormwater Wetlands (includes Gravel Wetlands designs)							
	Treebox Filter							
	Water Quality Swale							
	Grass Channel							
	Green Roof							
\square	Other (describe):	Porous Pavement						

Standard 1: No New Untreated Discharges

- No new untreated discharges
- Outlets have been designed so there is no erosion or scour to wetlands and waters of the Commonwealth
- Supporting calculations specified in Volume 3 of the Massachusetts Stormwater Handbook included.

Standard 2: Peak Rate Attenuation

- Standard 2 waiver requested because the project is located in land subject to coastal storm flowage and stormwater discharge is to a wetland subject to coastal flooding.
- Evaluation provided to determine whether off-site flooding increases during the 100-year 24-hour storm.

Calculations provided to show that post-development peak discharge rates do not exceed predevelopment rates for the 2-year and 10-year 24-hour storms. If evaluation shows that off-site flooding increases during the 100-year 24-hour storm, calculations are also provided to show that post-development peak discharge rates do not exceed pre-development rates for the 100-year 24hour storm.

Standard 3: Recharge

- Required Recharge Volume calculation provided.
- Required Recharge volume reduced through use of the LID site Design Credits.
- Sizing the infiltration, BMPs is based on the following method: Check the method used.

Static	🛛 Simple Dynamic
--------	------------------

Dynamic Field¹

- Runoff from all impervious areas at the site discharging to the infiltration BMP.
- Runoff from all impervious areas at the site is *not* discharging to the infiltration BMP and calculations are provided showing that the drainage area contributing runoff to the infiltration BMPs is sufficient to generate the required recharge volume.
- Recharge BMPs have been sized to infiltrate the Required Recharge Volume.
- Recharge BMPs have been sized to infiltrate the Required Recharge Volume *only* to the maximum extent practicable for the following reason:
 - Site is comprised solely of C and D soils and/or bedrock at the land surface
 - M.G.L. c. 21E sites pursuant to 310 CMR 40.0000
 - Solid Waste Landfill pursuant to 310 CMR 19.000
 - Project is otherwise subject to Stormwater Management Standards only to the maximum extent practicable.
- \boxtimes Calculations showing that the infiltration BMPs will drain in 72 hours are provided.
- Property includes a M.G.L. c. 21E site or a solid waste landfill and a mounding analysis is included.

¹ 80% TSS removal is required prior to discharge to infiltration BMP if Dynamic Field method is used.

Standard 3: Recharge (continued)

The infiltration BMP is used to attenuate peak flows during storms greater than or equal to the 10year 24-hour storm and separation to seasonal high groundwater is less than 4 feet and a mounding analysis is provided.

Documentation is provided showing that infiltration BMPs do not adversely impact nearby wetland resource areas.

Standard 4: Water Quality

The Long-Term Pollution Prevention Plan typically includes the following:

- Good housekeeping practices;
- · Provisions for storing materials and waste products inside or under cover;
- Vehicle washing controls;
- Requirements for routine inspections and maintenance of stormwater BMPs;
- Spill prevention and response plans;
- Provisions for maintenance of lawns, gardens, and other landscaped areas;
- Requirements for storage and use of fertilizers, herbicides, and pesticides;
- Pet waste management provisions;
- Provisions for operation and management of septic systems;
- Provisions for solid waste management;
- Snow disposal and plowing plans relative to Wetland Resource Areas;
- Winter Road Salt and/or Sand Use and Storage restrictions;
- Street sweeping schedules;
- Provisions for prevention of illicit discharges to the stormwater management system;
- Documentation that Stormwater BMPs are designed to provide for shutdown and containment in the event of a spill or discharges to or near critical areas or from LUHPPL;
- Training for staff or personnel involved with implementing Long-Term Pollution Prevention Plan;
- List of Emergency contacts for implementing Long-Term Pollution Prevention Plan.
- A Long-Term Pollution Prevention Plan is attached to Stormwater Report and is included as an attachment to the Wetlands Notice of Intent.
- Treatment BMPs subject to the 44% TSS removal pretreatment requirement and the one inch rule for calculating the water quality volume are included, and discharge:
 - is within the Zone II or Interim Wellhead Protection Area
 - \boxtimes is near or to other critical areas
 - is within soils with a rapid infiltration rate (greater than 2.4 inches per hour)
 - involves runoff from land uses with higher potential pollutant loads.
- The Required Water Quality Volume is reduced through use of the LID site Design Credits.
- Calculations documenting that the treatment train meets the 80% TSS removal requirement and, if applicable, the 44% TSS removal pretreatment requirement, are provided.

Sta	Standard 4: Water Quality (continued)						
\boxtimes	The BMP is sized (and calculations provided) based on:						
	The ½" or 1" Water Quality Volume or						
	The equivalent flow rate associated with the Water Quality Volume and documentation is provided showing that the BMP treats the required water quality volume.						
	The applicant proposes to use proprietary BMPs, and documentation supporting use of proprietary BMP and proposed TSS removal rate is provided. This documentation may be in the form of the propriety BMP checklist found in Volume 2, Chapter 4 of the Massachusetts Stormwater Handbook and submitting copies of the TARP Report, STEP Report, and/or other third party studies verifying performance of the proprietary BMPs.						
	A TMDL exists that indicates a need to reduce pollutants other than TSS and documentation showing that the BMPs selected are consistent with the TMDL is provided.						
Sta	ndard 5: Land Uses With Higher Potential Pollutant Loads (LUHPPLs)						
	The NPDES Multi-Sector General Permit covers the land use and the Stormwater Pollution Prevention Plan (SWPPP) has been included with the Stormwater Report. The NPDES Multi-Sector General Permit covers the land use and the SWPPP will be submitted prior to the discharge of stormwater to the post-construction stormwater BMPs.						
	The NPDES Multi-Sector General Permit does <i>not</i> cover the land use.						
	LUHPPLs are located at the site and industry specific source control and pollution prevention measures have been proposed to reduce or eliminate the exposure of LUHPPLs to rain, snow, snow melt and runoff, and been included in the long term Pollution Prevention Plan.						
	All exposure has been eliminated.						
	All exposure has <i>not</i> been eliminated and all BMPs selected are on MassDEP LUHPPL list.						
	The LUHPPL has the potential to generate runoff with moderate to higher concentrations of oil and grease (e.g. all parking lots with >1000 vehicle trips per day) and the treatment train includes an oil grit separator, a filtering bioretention area, a sand filter or equivalent.						
Sta	ndard 6: Critical Areas						
\boxtimes	The discharge is near or to a critical area and the treatment train includes only BMPs that MassDEP has approved for stormwater discharges to or near that particular class of critical area.						

 \boxtimes Critical areas and BMPs are identified in the Stormwater Report.

Standard 7: Redevelopments and Other Projects Subject to the Standards only to the maximum extent practicable

- The project is subject to the Stormwater Management Standards only to the maximum Extent Practicable as a:
 - Limited Project
 - Small Residential Projects: 5-9 single family houses or 5-9 units in a multi-family development provided there is no discharge that may potentially affect a critical area.

Small Residential Projects: 2-4 single family houses or 2-4 units in a multi-family development with a discharge to a critical area

- Marina and/or boatyard provided the hull painting, service and maintenance areas are protected from exposure to rain, snow, snow melt and runoff
- Bike Path and/or Foot Path
- Redevelopment Project
- Redevelopment portion of mix of new and redevelopment.
- Certain standards are not fully met (Standard No. 1, 8, 9, and 10 must always be fully met) and an explanation of why these standards are not met is contained in the Stormwater Report.
- The project involves redevelopment and a description of all measures that have been taken to improve existing conditions is provided in the Stormwater Report. The redevelopment checklist found in Volume 2 Chapter 3 of the Massachusetts Stormwater Handbook may be used to document that the proposed stormwater management system (a) complies with Standards 2, 3 and the pretreatment and structural BMP requirements of Standards 4-6 to the maximum extent practicable and (b) improves existing conditions.

Standard 8: Construction Period Pollution Prevention and Erosion and Sedimentation Control

A Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan must include the following information:

- Narrative;
- Construction Period Operation and Maintenance Plan;
- Names of Persons or Entity Responsible for Plan Compliance;
- Construction Period Pollution Prevention Measures;
- Erosion and Sedimentation Control Plan Drawings;
- Detail drawings and specifications for erosion control BMPs, including sizing calculations;
- Vegetation Planning;
- Site Development Plan;
- Construction Sequencing Plan;
- Sequencing of Erosion and Sedimentation Controls;
- Operation and Maintenance of Erosion and Sedimentation Controls;
- Inspection Schedule;
- Maintenance Schedule;
- Inspection and Maintenance Log Form.

A Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan containing the information set forth above has been included in the Stormwater Report.

Standard 8: Construction Period Pollution Prevention and Erosion and Sedimentation Control (continued)

- ☐ The project is highly complex and information is included in the Stormwater Report that explains why it is not possible to submit the Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan with the application. A Construction Period Pollution Prevention and Erosion and Sedimentation Control has *not* been included in the Stormwater Report but will be submitted *before* land disturbance begins.
- The project is *not* covered by a NPDES Construction General Permit.
- The project is covered by a NPDES Construction General Permit and a copy of the SWPPP is in the Stormwater Report.
- The project is covered by a NPDES Construction General Permit but no SWPPP been submitted. The SWPPP will be submitted BEFORE land disturbance begins.

Standard 9: Operation and Maintenance Plan

- The Post Construction Operation and Maintenance Plan is included in the Stormwater Report and includes the following information:
 - Name of the stormwater management system owners;
 - Party responsible for operation and maintenance;
 - Schedule for implementation of routine and non-routine maintenance tasks;
 - Plan showing the location of all stormwater BMPs maintenance access areas;
 - Description and delineation of public safety features;
 - Estimated operation and maintenance budget; and
 - Operation and Maintenance Log Form.
- The responsible party is *not* the owner of the parcel where the BMP is located and the Stormwater Report includes the following submissions:
 - A copy of the legal instrument (deed, homeowner's association, utility trust or other legal entity) that establishes the terms of and legal responsibility for the operation and maintenance of the project site stormwater BMPs;
 - A plan and easement deed that allows site access for the legal entity to operate and maintain BMP functions.

Standard 10: Prohibition of Illicit Discharges

- The Long-Term Pollution Prevention Plan includes measures to prevent illicit discharges;
- An Illicit Discharge Compliance Statement is attached;
- NO Illicit Discharge Compliance Statement is attached but will be submitted *prior to* the discharge of any stormwater to post-construction BMPs.

STORMWATER MANAGEMENT REPORT

OAK CREST COVE BOAT RAMP CAPE COD BOAT RAMP STORMWATER RETROFIT PROJECT SANDWICH, MA

TABLE OF CONTENTS

STORIV	1WATER CHECKLIST	ii
EXECU	TIVE SUMMARY	1
1.	INTRODUCTION	2
1.1	Background	2
1.2	Project Goals	2
1.3	Design Methodology	3
2.	Existing Conditions	3
2.1	Receiving Water and Watershed	4
2.2	Drainage Area	4
2.3	Resource Areas	4
2.4	Soils	5
3.	Proposed Conditions	6
3.1	Drainage Areas	6
3.2	Structural Stormwater Control Measures (SCMs)	6
3.3	Non-structural SCMs	8
4.	Stormwater Design Components	8
4.1	Water Quality	8
4.2	Recharge	10
4.3	Water Quantity	11
4.4	Erosion Control	11
4.5	Operation and Maintenance	12
4.6	Illicit Discharges	12
5.	REFERENCES	13

TABLES

Table 1. Project MASMS Compliance Summary	1
Table 2. NRCS Soils Data for Drainage Areas	5
Table 3. Test Pit (TP) Results	5
Table 4. Compliance with Water Quality Volume Requirements	9
Table 5. Compliance with Water Quality Pollutant Load Reduction Requirements	9
Table 6. Compliance with Recharge Requirements	10
Table 7. Summary of Existing and Proposed Condition Peak Flow Rates and Runoff Volumes	11

FIGURES

Locus Map
Aerial Map
Constraints Map

Figure 4: Receiving Waters Map

Figure 5: Soils Map

APPENDICES

- Appendix A: Drainage Areas
- Appendix B: Hydrologic/Hydraulic Model Results
- Appendix C: Wetland Resources Summary Memo
- Appendix D: Soil Test Pit Logs
- Appendix E: Operation and Maintenance Guide
- Appendix F: Pollutant Controls During Construction
- Appendix G: Site Plans

EXECUTIVE SUMMARY

The purpose of this report is to describe existing and proposed site drainage conditions at the Oak Crest Cove Boat Ramp, as well as measures to prevent stormwater pollution during and after construction. This project is part of a regional effort led by the Association to Preserve Cape Cod (APCC) to improve water quality at public boat ramps on Cape Cod by implementing green stormwater infrastructure (GSI) retrofits. The main goal for this site is to better manage and treat stormwater runoff that is flowing into Peters Pond via the boat ramp. The project also aims to address erosion problems occurring on the steep slope along the summer camp access road and provide public outreach on the benefits of GSI and overarching watershed issues using interpretive signage.

The project includes the following structural and non-structural stormwater control measures (SCMs):

- Sediment Forebays for Pretreatment
- Bioretention Areas for Treatment
- Surface and Underground Infiltration
- Porous Pavement
- Slope Stabilization
- Public Educational Signage

Since the proposed stormwater management system is a retrofit project undertaken solely to improve water quality at the site, it falls under the redevelopment category in accordance with the Massachusetts Stormwater Management Standards (MASMS 2008), as described in Massachusetts Stormwater Handbook, Volume 1 Chapter 1. As a redevelopment project, the design is required to meet the MASMS standards to the maximum extent practicable (MEP).

As shown in **Table 1**, the proposed project meets or exceeds each standard, except the water quality/critical area standards, which are met to the MEP. While each of the proposed treatment SCMs are designed to capture and treat the full one inch of runoff of their contributing drainage areas, a portion of the site's runoff could not be captured due to site constraints. However, through the integration of surface and underground infiltration, the proposed design reduces total peak runoff flow rates and volumes for the 2-, 10-, 25-, and 100-year storms. Overall, this project will significantly improve conditions at the Oak Crest Cove Boat Ramp and reduce on-going impacts to Peter's Pond.

	Minimum Standard	Туре	Compliance	Report Reference(s)		
1	New Stormwater Conveyances	Narrative	Yes	Section 3.2		
2	Water Quantity	Calculation	Yes	Section 4.3/Table 7/Appendix B		
3	Recharge	Calculation	Yes	Section 4.2/Table 6/Appendix B		
4	Water Quality	Calculation	MEP	Section 4.1/Table 4/Table 5/Appendix B		
5	Land Uses with Higher Potential Pollutant Loading	Narrative	Not Applicable	Section 2		
6	Critical Areas	Narrative	MEP	Section 4.1		
7	Redevelopment	Narrative	Yes	Section 4		
8	Erosion Control	Narrative	Yes	Section 4.4/Appendix G		
9	Operation and Maintenance	Narrative	Yes	Section 4.5/Appendix E		
10	Illicit Discharges	Narrative	Yes	Section 4.6		

Table 1. Project MASMS Compliance Summary

1. INTRODUCTION

This report provides a summary of the stormwater management systems proposed for the Oak Crest Cove Boat Ramp in Sandwich, MA, a Town owned and operated boat ramp (**Figure 1**). The Sandwich Departments of Recreation, Natural Resources, and Public Works are proposing this project in collaboration with the Association to Preserve Cape Cod (APCC) as a part of a regional effort (Cape Cod Boat Ramp Stormwater Retrofit Project) to improve water quality at public boat ramps across Cape Cod. The proposed project has been designed to retrofit existing impervious areas for water quality improvements while also managing runoff from larger storms and improving overall site conditions. This report describes the existing and proposed site conditions and the practices to be implemented to reduce stormwater discharges and pollutants during and after construction. As required for retrofit projects, the stormwater system for the project has been designed to conform to the requirements of the Massachusetts Stormwater Standards (MASMS) to the maximum extent practicable.

1.1 Background

Freshwater ponds and coastal embayments across Cape Cod are significantly degraded by nutrient and bacteria impairment. Land uses, including stormwater runoff and fertilizer use, contribute on average 20% of the controllable nitrogen load within our coastal watersheds (Cape Cod Commission 208 Plan, 2015) and bacterial contamination, including cyanobacteria, regularly causes closures of beaches. In report (APCC's 2022 State of the Waters), 90% of the coastal embayments and 39% of the freshwater ponds assessed received unacceptable water quality scores. These high nutrient loads are of concern for the environment, our coastal economy, and public health as they negatively impact habitat for fish and shellfish and can result in unsafe conditions for swimming, fishing and boating. Public boat ramps are a common source of pollution in areas of high recreational use. As such, these locations have been targeted by APCC's regional project.

As part of an EPA Southeast New England Program (SNEP) Watershed Grant, APCC and partners first identified 20 public boat ramps across 10 Cape Cod towns in need of improved stormwater management. Concept designs for each of these twenty sites were ranked based on various criteria including potential pollutant removal (i.e., load and drainage area), water quality status of the associated waterbody, construction cost and feasibility, and additional human use and resource benefits (restored shellfish and anadromous fish habitat, proximity to environmental justice communities, improved climate resiliency, opportunity for public education, etc.). With additional funding from a CZM FY23 Coastal Habitat and Water Quality Grant, 25% and 75% designs were developed for seven highranking priority sites, including this one at Oak Crest Cove on Peter's Pond. Throughout the project, the team has been working closely with the Friends of Peter's Pond to discuss and review plans for this site.

1.2 Project Goals

The purpose of this project is to improve water quality in Peter's Pond by reducing or eliminating pollutant loads from stormwater runoff at the public boat ramp using green stormwater infrastructure (GSI) stormwater control measures (SCMs). Specifically, the project aims to maximize pollutant removal (% bacteria, nitrogen and phosphorus) and water quality volume treated. Over time, we hope this work

leads to a reduction in the frequency and/or length of beach closures related to bacteria contamination or cyanobacteria blooms; reduction in nutrients and associated impacts; and improvements to freshwater habitat.

1.3 Design Methodology

The design was completed by the following tasks:

- Preliminary field assessment of the site and contributing drainage area to identify usage, physical and environmental constraints and opportunities, and long-term operation and maintenance concerns
- Determination of drainage areas and land coverage within the project area
- Selection of structural and non-structural SCMs best suited to site conditions and project goals
- Structural SCM sizing and performance estimates (described further below)
- Hydrologic/Hydraulic Modeling (described further below)
- Grading and layout of site plan
- Erosion control plan development
- Operation and maintenance (O&M) plan development

SCM Performance Estimates

The proposed SCMs were selected and sized to maximize pollutant load removals. Since there is a nearby public beach and Peter's Pond has water quality impairments, the SCMs were chosen to maximize not only total suspended solids (TSS) removal, but total phosphorus (TP), total nitrogen (TN), and bacteria load reductions as well. MASMS was used as a reference for TSS removal estimates for bioretentions, but the more recently developed pollutant load removal curves (USEPA 2021 & Paradigm Environmental 2019) were used for TP, TN, and bacteria.¹

Hydrologic/Hydraulic Modeling

Existing and proposed conditions for the project area were modeled using HydroCAD software, which combines USDA Soil Conservation Service hydrology and hydraulic techniques (commonly known as SCS TR-55 and TR-20) to generate hydrographs. Conditions were evaluated for the water quality event (storm that produces 1 inch of runoff, or a roughly 1.2-inch rain event) as well as larger storm events, including the 2-, 10-, 25- and 100-year 24-hour Type III storm events. The rainfall depths used for each storm event are the NOAA+ values (NOAA Atlas 14 90% Upper Confidence value multiplied by 0.9) (NOAA NWS, 2017). Rainfall values are included in **Appendix A**.

2. Existing Conditions

The Oak Crest Cove Boat Ramp is a popular water access point on the north end of Peter's Pond, adjacent to a public beach, and accessed by Quaker Meetinghouse Road. It is located within a mile of a

¹ It is important to note that these curves have a crosswalk to help users determine which specific curve to reference: for infiltrating bioretentions (no liners/underdrains), the appropriate curve is the Surface Infiltration (Soil infiltration rate = 2.41 in/hr) Performance Curve.

mapped income environmental justice population (**Figure 3**). The site's land use is not classified as a land use with higher potential pollutant loads (LUHPPL) and thus, is not subject to MASMS **Standard 5**.

The project site includes a large parking area at the recreation (rec) center, a driveway down to the boat ramp, and a basketball court (**Figure 2**). There is no parking at the boat ramp - cars park at either the rec center or public beach parking lots. Catch basins from the rec center parking lot are directed untreated down the driveway to the boat ramp. Additionally, runoff from the access road to the summer camp area flows down the steep slope behind the basketball court, over the basketball court, and down the boat ramp. This runoff has caused large amounts of erosion on the vegetated slope and sediment build-up on the basketball court.

2.1 Receiving Water and Watershed

Oak Crest Cove Boat Ramp discharges stormwater into Peter's Pond, a groundwater-fed kettle pond with no outlets. Peter's Pond (MA96244) is located in the greater Cape Cod Watershed. The pond provides important freshwater habitat for a variety of fish and invertebrate species and is adjacent to a public beach. However, it is listed as impaired for mercury in fish tissue by the most recent Massachusetts DEP 303(d) – 2022 Integrated list of Waters (Category 4A – TMDL completed) **(Figure 4)**, and APCC's State of the Waters Report lists it as unacceptable for nutrient loading. In addition, the pond has been experiencing cyanobacteria blooms in recent years.

2.2 Drainage Area

The boat ramp's existing contributing drainage area is approximately 9.42 acres. This area is mostly undisturbed forest, with 1.36 acres of impervious cover. The entirety of DA1 directly drains to the boat ramp, modeled as Study Point 1 (SP1). An additional study point, Study Point 2 (SP2) was modeled, which is located at the discharge point in the southeastern corner of the rec center parking lot and flows to the pond at the public beach. The contributing drainage area (DA2) is approximately 0.21 acres, of which most is impervious area (0.19 acres). DA2 consists of roughly half of the rec center parking lot. See the existing conditions drainage area map and a detailed breakdown of land cover in **Appendix A**, as well as the existing HydroCAD model report in **Appendix B**.

2.3 Resource Areas

HW wetland biologists delineated several resource areas at the site in December 2022. A full description of these resource areas is included in **Appendix C**, and their locations and associated buffers are shown on the plans in **Appendix G**. The wetland resource areas include an Isolated Vegetated Wetland (IVW) (locally Freshwater Wetland); Bank (locally Inland Bank); and the 50-Foot Naturally Vegetated Buffer Strip and 100-foot Buffer Zone to IVW/Freshwater Wetland and Bank/Inland Bank. Bank/Inland Bank is present around the perimeter of Peter's Pond. The forested hillside to the north and west of the court area and the slopes adjacent to the driveway leading down to the boat ramp contained a high density of invasive plant species including multiflora rose, Asiatic bittersweet (*Celastrus orbiculatus*), shrub honeysuckle (*Lonicera sp.*), Japanese honeysuckle and border privet (*Ligustrum obtusifolium*). Additionally, the Bank along the pond edge contained significant densities of invasive gray willow.

According to the most recent version of the *Massachusetts Natural Heritage Atlas* (15th Edition, August 1, 2021), there are no areas of *Estimated Habitat of Rare Wildlife and Certified Vernal Pools* and/or *Priority Habitat of Rare Species* located at the site, as designated by the Massachusetts Natural Heritage and Endangered Species Program (NHESP) (**Figure 3**). The area is not located within a FEMA Flood Hazard Zone, as shown in the wetland memo (**Appendix C**). Since the site discharges near a public beach area, it is considered a critical area and subject to MASMS **Standard 6**.

2.4 Soils

Soils data from the Natural Resources Conservation Service (NRCS) indicate that the soils within the drainage areas to the site are composed of Hinckley Loamy Sand, 15-35% slopes and Enfield silt loam, 0-3% slopes. The distribution of hydrologic soil groups (HSGs) of those soils within the contributing drainage areas are outlined in **Table 2** and shown in **Appendix A**.

Soil Type	HSG	Acres in Total Drainage Area (% of Total)
Hinckley loamy sand	А	5.94 (62%)
Enfield silt loam	В	3.70 (38%)
	TOTAL	9.63 (100%)

Table 2. NRCS Soils Data for Drainage Areas

Two test pits were conducted at the site on January 24, 2023 to evaluate subsurface conditions and estimated seasonal high groundwater (ESHGW) based on evidence of mottling or redox. The test pits were excavated and witnessed by the Town's DPW staff and logged by HW certified Massachusetts Soil Evaluators. Results are shown in **Table 3**; the first test pit was conducted just off the east edge of the basketball court, and the second was just off the west edge of the upper parking area. The soil at both locations was found to be sandy loam overlaying sand and no groundwater features were observed in either test pit. See **Appendix B** for the test pit soil logs.

Since groundwater indicators were not observed in the test pits, regional groundwater information was reviewed to get a better understanding of estimated groundwater elevations for the stormwater designs. Average regional groundwater contours were developed from a MODFLOW groundwater model for a study conducted by USGS in 2005 titled "Simulated Water Sources and Effects of Pumping on Surface and Ground Water, Sagamore and Monomoy Flow Lenses, Cape Cod, Massachusetts." The model estimates groundwater elevations at the site to be between 65 feet and 64 feet, roughly 5 feet below the bottom of TP-1 (69.3 feet). Based on this model, the test pits, and the elevation of the pond at the time of surveying (<65 feet), the ESHGW was assumed to be at 65 feet for this project design.

Test Pit ID	Surface Elevation at TP (ft)	Pit Bottom Elevation (ft)	ESHGW Elevation (ft)	Soil Texture(s)	Design Infiltration Rate (in/hr)	Notes
TP-1	78.8	69.3	65	Sand	8.27	ESHGW assumed based on regional data
TP-2	92.4	83.4	65	Sand	8.27	ESHGW assumed based on regional data

Table 3. Test Pit (TP) Results

3. Proposed Conditions

The proposed project consists of the following stormwater and related site development improvements:

- Installation of porous pavement for parking lot and basketball court, while meeting required drive aisle and parking space dimensions;
- GSI including bioretention areas and infiltration;
- Slope stabilization on existing eroded steep slope; and
- Protection of as many existing mature trees as possible.

The proposed GSI system is designed to meet the following major objectives:

- Capture, treat, and infiltrate at least the first one inch of runoff;
- Reduce peak flows and runoff volumes from the site by infiltrating the 2-year storm runoff volume; and
- Engage the community with interpretive signage.

3.1 Drainage Areas

The boat ramp (SP1)'s contributing drainage area (DA1) under proposed conditions is very similar to existing, with a total of approximately 9.47 acres. However, the proposed project is reducing impervious cover to SP1 by converting approximately 0.37 acres of traditional pavement to porous pavement, dropping the total impervious cover to approximately 10%. DA1 is subdivided for the proposed conditions in order to model flows to the proposed SCMs. The proposed DA1 drainage areas are DA1A (Summer Camp), DA1B (Woods), and DA1C (Boat Ramp). The proposed SCMs were added as "ponds" in the HydroCAD model. The entirety of DA1 will discharge runoff to Study Point 1 (SP1), similar to in existing conditions.

SP2's contributing drainage area (DA2) under proposed conditions is also very similar to existing conditions. A small portion of the boat ramp driveway has been redirected to continue down the driveway and not flow on to the porous pavement. Impervious area in this drainage area has been eliminated by converting 0.17 acres of traditional pavement to porous pavement.

The proposed porous asphalt on the entire site was modeled with a reduced curve number (CN = 40) per the Rhode Island Stormwater Design and Installation Standards Manual (2015). See the proposed conditions drainage area map and a detailed breakdown of land cover in **Appendix A**, as well as the proposed HydroCAD model report in **Appendix B**.

3.2 Structural Stormwater Control Measures (SCMs)

The proposed stormwater management includes a GSI approach to capture, treat, infiltrate, and detain runoff by using the following SCMs. There are five stormwater GSI practices proposed throughout the site – including a bioretention area, surface infiltration basin, underground infiltration, and two areas of porous pavement. Pretreatment will be provided with sediment forebays, and overflows from extreme events will flow through structures and spillways. The stormwater management systems were designed

to meet **Standard 1**, so that no new untreated stormwater runoff will be directed to any off-site areas or resource areas. Runoff from contributing impervious areas will be treated by the proposed practices.

Sediment Forebays

Porous sediment forebays are provided for pretreatment of the runoff from the paved surfaces to allow for sediment and other debris to settle out prior to conveyance into the bioretention areas.

Bioretention Areas (BIO)

A bioretention area (BIO) is a shallow depression used to treat stormwater runoff using a specific planting soil and plants to filter runoff. The method combines physical filtering and adsorption with biogeochemical processes to remove pollutants. The system consists of an inflow component, a pretreatment element, a shallow ponding area planted with appropriate native plant species (tolerant to both wet and dry periods as well as other site conditions such as wind, salt, shade, etc.), an overflow structure, and an emergency overflow weir. Some BIOs located in areas with poor drainage or high groundwater are lined and/or have underdrains, while others located in sandy soils greater than 2 feet above ESHGW can just infiltrate the treated runoff.

An infiltrating BIO system is proposed downgradient of the summer camp access drive. This BIO captures, treats, and infiltrates the first inch of runoff from the contributing drainage areas. Additional runoff from larger storm events will be diverted and piped to underground infiltration via the diversion drainage manhole. An emergency overflow weir is also provided to help safely direct flows in extreme events or failure of other infrastructure. The BIO has greater than 2-feet separation to ESHGW as required. The BIO will be planted with low-maintenance, native plants tolerant of the shady site conditions. Appropriate plants from the Cultural List were used as possible.

Surface Infiltration

Infiltration basins are surface stormwater facilities designed to collect and temporarily store runoff before infiltration into the subsoil. Infiltration basins allow stored water to infiltrate and recharge groundwater.

An infiltration basin is proposed on the northern side of the basketball courts to capture the runoff from the wooded area north of the basketball courts. Additionally, the emergency overflow from the BIO is directed to this basin via a spillway. Overflow from the infiltration basin is directed to underground infiltration via an overflow structure.

Underground Infiltration

Underground infiltration is a subsurface stormwater facility that is designed to collect and temporarily store runoff before infiltration into the subsoil to recharge groundwater. For this site, a 48" perforated pipe (surrounded by stone) and recharge basin are designed to provide additional infiltration during large storm events. The 2-year storm event is fully retained and infiltrated in these structures. Once the pipe and recharge basin reach capacity, the flow will overflow out of the recharge basin grate and down to the boat ramp.

Porous Pavement

Porous pavement is designed to capture and infiltrate runoff while providing the stability of traditional pavement. The system consists of a porous layer over a layer of crushed stone. For small storms, the runoff falling directly on the porous pavement will completely infiltrate. For larger, intense storms, rainfall rate can exceed the infiltration rate of the porous pavement surface. Once this occurs, runoff will flow across the surface to the low point/drainage structure. Porous pavement should be placed to minimize "run-on" from adjacent traditional impervious pavement, as this can lead to premature clogging.

Porous pavement is proposed in the rec center parking lot and the basketball court, and the site is designed to prevent "run-on" to these areas. During those larger, intense storm events, runoff from the porous pavement at the rec center parking lot will flow into the existing catch basins in the parking lot, and runoff from the basketball court porous pavement will flow down the boat ramp driveway and into Peter's Pond.

3.3 Non-structural SCMs

The non-structural SCMs proposed at the site include slope stabilization and public educational signage. The eroded gullies on the steep slope around the site are proposed to be regraded and revegetated to provide stabilization. In addition, an interpretive sign is proposed at the rec center parking lot, looking toward the BIO, infiltration basin, and porous basketball courts. This sign will explain the GSI at the site as a part of the larger watershed issues discussed above and encourage GSI actions at home.

4. Stormwater Design Components

The proposed SCMs were designed to meet a variety of goals and regulatory requirements as discussed above. As a retrofit project for managing existing impervious cover, this design must specifically comply with the redevelopment standard (MASMS **Standard 7**) by meeting all standards to the maximum extent practicable. The project fully meets this standard, as described in detail below.

4.1 Water Quality

The main purpose of this retrofit project is to improve water quality. This section describes the treatment volumes and pollutant load reductions achieved by the proposed design and how they compare to the MASMS standards.

Treatment Volume

Per **Standard 4** of MASMS, the stormwater management system for a <u>new</u> development site discharging to a critical area must be sized to treat the first one inch of runoff and remove 80% or more of the annual post-construction load of total suspended solids (TSS). As a retrofit (falls under **Standard 7** - Redevelopment), the project is only required to meet this to the maximum extent practicable. While the proposed bioretention and porous pavement systems are sized to treat the full one-inch water quality volume (WQv) for their contributing drainage areas, the rest of the impervious area in the boat ramp

drainage area could not be captured and treated (DA1C). The proposed HydroCAD model results showing treatment volumes are included in **Appendix B** and summarized below in **Table 4**.

DA ID	SCM ID	IA* (ac)	WQv Goal (ac-ft)	WQv Provided (ac-ft)**	% WQv Provided	Meets Requirement?	Notes
DA1A	BIO1	0.55	0.046	0.046	100%	Y	Bioretention treats 1-inch runoff. Roofs in this DA are considered unconnected IA and not included in the WQv Goal.
DA1B	D1	0	0	0	NA	Y	Wooded Area – no impervious
DA1C	PP*	0.72	0.060	0.029	48%	MEP	Treatment provided by porous pavement.
DA2	PP*	0.17	0.014	0.014	100%	Y	Treatment provided by porous pavement.
TOTAL SITE:		1.43	0.120	0.089	73.8%	MEP	MEP for Retrofit Projects

Table 4. Compliance with Water Quality Volume Requirements

*Impervious Area (IA), Porous Pavement (PP)

**From HydroCAD results - see Attachment B for volume "discarded" for WQv Event

Pollutant Load Reductions

The bioretention and porous pavement areas exceed the MASMS requirements for TSS removal and maximize removal of the other pollutants of concern for their contributing drainage area. Estimated TSS, phosphorus (TP), nitrogen (TN), and bacteria removals for the proposed project are provided in **Table 5**. The proposed O&M Guide in **Appendix E** was developed to ensure that the stormwater system continues to function as it was designed into the future to maintain these levels of pollutant removal.

DA ID	SCM ID	IA* (ac)	WQv Provided (ac-ft)**	Runoff Depth Treated (in)	TSS Removal (%)***	TP Removal (%)****	TN Removal (%)****	Bacteria Removal (%)*****	Meets Reqt?
DA1A	BIO1	0.55	0.046	1.0	90%	98%	100%	100%	Y
DA1B	D1	0	0	0	NA	NA	NA	NA	Y
DA1C	PP*	0.72	0.029	0.5	38%	47%	47%	47%	MEP
DA2	PP*	0.17	0.014	1.0	80%	98%	100%	100%	Y
TOTAL SITE:		1.43	0.089	0.7	63%	73%	73%	73%	MEP

Table 5. Compliance with Water Quality Pollutant Load Reduction Requirements

*Impervious Area (IA), Porous Pavement (PP)

**From HydroCAD results - see Attachment B for volume "discarded" for WQv Event

***From MASMS

****From MS4 NPDES Permit Appendix F Attachment 3 (USEPA 2021)

*****From Paradigm Environmental (2019)

In addition, since the site is located in a critical area (near a public beach) and must meet MASMS **Standard 6**, pretreatment practices before infiltration should remove 44% TSS or more. As shown above in **Table 5**, a bioretention with sediment forebay is provided for pretreatment prior to infiltration into the underlying soil, providing 90% TSS removal. Additionally, the upper layers of the porous pavement

act as pretreatment to the lower stone reservoir layer. Sediment will be held in the porous pavement and provide 80% TSS removal. The frequent cleaning and maintenance of the pavement will ensure it does not clog and continues to function properly. The combination of these two SCMs provides more than the required TSS removal by **Standard 6**.

Long-term Pollution Prevention Plan

Source control is important to ensure long-term functionality of the proposed SCMs and protect downstream resources and habitat. A long-term pollution prevention plan specific to this site is provided as a part of the O&M Guide in **Appendix E**.

4.2 Recharge

Infiltrating treated runoff into the underlying native sands is a goal of this project. For new development projects, the MASMS requires a specific annual "recharge" volume (Rev) based on the HSG of the soil covered by new impervious surfaces, with a higher volume required for sandy soils (HSG A) and lower for silty, clayey soils (HSG D). This project is only required to recharge to the maximum extent practicable as a redevelopment project, as there is already pavement at the site.

However, the proposed SCMs provide more than required by **Standard 3**. A portion of stormwater runoff at the site is being directed to the infiltrating bioretention system in comparison to the existing conditions where runoff is mostly directly draining to the pond. Additionally, 23,342sf of pavement is being converted into porous pavement, providing additional recharge. Another requirement of **Standard 3** is that infiltrating SCMs must fully drain in 72 hours. The proposed HydroCAD model results showing full recharge of the first inch of runoff by the bioretention area and the drawdown times (from full basins to empty) are included in **Appendix B** and summarized below in **Table 6**.

DA ID	SCM ID	IA *(ac)	Soil HSG	Required Recharge Depth (in)	Rev Goal (ac-ft)	Rev Provided (ac-ft)**	% Rev Provided	Draw- down Time (hrs)***	Meets Reqt?	Notes	
DA1A	BIO1	0.30	A	0.6	0.015	0.046	207%	12	Y	Bioretention treats 1- inch runoff. Roofs in this DA are considered unconnected IA and not included in the Rev Goal.	
		0.25	В	0.35	0.007						
DA1B	D1	0	A	0.6	NA	NA	NA	NA	Y	Wooded Area – no runoff	
DA1C	PP*	0.72	А	0.6	0.036	0.029	79%	12	MEP	Recharge provided by porous pavement.	
DA2	PP*	0.17	A	0.6	0.008	0.014	167%	12	Y	Recharge provided by porous pavement.	
TOTAL SITE:		1.43			0.067	0.088	133%		Y	Exceeds Requirement for Site	

Table 6. Compliance with Recharge Requirements

*Impervious Area (IA), Porous Pavement (PP)

**From HydroCAD results - see Attachment B for volume "discarded" for WQv Event

***From HydroCAD results – see Attachment B for hydrograph showing time from peak elevation to fully drained basins (WQv Event)

4.3 Water Quantity

The main goal of this project is to improve water quality and habitat, but reducing water quantity impacts during large storm events was also incorporated. As such, the infiltration basin, perforated pipe, recharge basin, and porous pavement all help to reduce peak flows and runoff volumes for the 2-, 10-, 25- and 100-year storms. The existing and proposed HydroCAD model results for these larger storm events are included in **Appendix B**, and the resulting peak flows and runoff volumes are summarized below in **Table 7** for both existing (EX) and proposed (PR) conditions. These results show that the proposed improvements will reduce peak flows and runoff volumes for all evaluated storms, and thus, fully meet the requirements of **Standard 2** of the MASMS.

Study Doi	Peak Flow, cfs				Runoff Volume, acre-ft				
Study Pol	2-yr	10-yr	25-yr	100-yr	2-yr	10-yr	25-yr	100-yr	
CD1	EX	0.39	3.18	6.59	13.39	0.128	0.530	0.951	1.773
381	PR	0.03	1.90	5.47	11.16	0.019	0.238	0.621	1.439
Reduction	%	92%	40%	17%	17%	85%	55%	35%	19%
602	EX	0.65	1.03	1.30	1.73	0.044	0.072	0.092	0.125
5P2	PR	0.00	0.02	0.06	0.23	0.000	0.004	0.010	0.021
Reduction	%	100%	98%	95%	87%	100%	94%	89%	83%

4.4 Erosion Control

Controlling erosion and sedimentation from the construction site is important to meet the overall water quality goals of this retrofit project, as well as to meet MASMS Standard 8. Given this site's size (< 1 acre of disturbance), a NPDES Construction General Permit Stormwater Pollution Prevention Plan (SWPPP) is not required. However, planning for effective erosion and sediment controls (ESCs) is important to this project's design, and an ESC Plan is included in the design plans (Appendix G), along with a detailed sequence of construction activities and ESC notes. Visibility fence and/or silt socks are proposed at the limit of work to protect off-site areas and trees; and silt socks and silt fences are proposed along the downgradient edges of areas of disturbance. Inlet protection is proposed on all existing and proposed catch basins to prevent sediment from entering the drainage systems. A construction entrance will be installed on the corner of the basketball courts to minimize tracking of sediment. Areas for sediment traps/basins have been identified for when the pavement is removed from the courts and parking lot, exposing a large area of soil. Disturbed areas will be stabilized as soon as possible to minimize erosion and sedimentation with pavement, seeding and/or erosion control blankets, if necessary. A pipe slope drain is proposed during construction to connect the 12" pipe discharging onto the steep slope to a sediment trap located on the edge of the court area. This will prevent runoff from flowing down the steep slope and causing erosion and sediment build up during construction. A Pollutant Controls During Construction guide is also included in Appendix F that discusses these controls in more detail. With

these layered ESCs implemented throughout the site, discharge of sediment-laden runoff during construction should be minimized to the maximum extent practicable.

The contractor will be required to establish these erosion controls prior to beginning any other projectrelated work. The ESC Plan will also establish the limit of work, beyond which the contractor will not be allowed to perform any work. It is the contractor's responsibility to monitor and correct erosion control practices throughout the duration of the project. Erosion control measures will not be removed until the project reaches completion as directed by the project engineer or landscape architect.

4.5 Operation and Maintenance

Ongoing maintenance is vital for long-term success at the site. All SCMs were designed to be lowmaintenance in nature. These SCMs will be operated and maintained appropriately during construction and post-construction as required on the construction drawings and O&M Guide per MASMS **Standard 9** (**Appendix E and G**).

4.6 Illicit Discharges

There will be no illicit discharges to the existing system by the proposed project per MASMS **Standard 10**. The Long-Term Pollution Prevention Plan in the O&M Guide (**Appendix E**) includes measures to prevent future illicit discharges.

5. **REFERENCES**

Association to Preserve Cape Cod. 2022. State of the Waters: Cape Cod Report.

Cape Cod Commission. 2015. 208 Plan – Cape Cod's Area Wide Water Quality Management Plan Updated.

Massachusetts Department of Environmental Protection (MADEP). 2008. Massachusetts Stormwater Standards Manual.

MADEP. 2019. See their homepage at <u>www.state.ma.gov/dep</u>.

MassGIS (Massachusetts Office of Geographic and Environmental Information). 2023. See their homepage at: <u>http://www.mass.gov/mgis/</u>.

National Oceanic and Atmospheric Administration (NOAA) - National Weather Service (NWS). 2017. Point Precipitation Frequency Estimates: MA. NOAA Atlas 14, Volume 10, Version 3. <u>https://hdsc.nws.noaa.gov/hdsc/pfds/pfds_map_cont.html?bkmrk=ma</u>

Paradigm Environmental. 2019. USEPA Memo. Tisbury MA Impervious Cover Disconnection (ICD) Project: An Integrated Stormwater Management Approach for Promoting Urban Community Sustainability and Resilience - Task 4D. Develop Planning Level GI SCM Performance Curves for Estimating Cumulative Reductions in SW-Related Indicator Bacteria.

Rhode Island Department of Environmental Management and Coastal Resources Management Council. 2015. Rhode Island Stormwater Design and Installation Standards Manual.

USEPA (United States Environmental Protection Agency). 2019. National Pollutant Discharge Elimination System (NPDES). See their homepage at: <u>http://cfpub.epa.gov/NPDES/</u>.

USEPA. 2021. National Pollutant Discharge Elimination System (NPDES)-General Permits for Stormwater Discharges from Small Municipal Separate Storm Sewer Systems in Massachusetts (as modified).

Walter, D.A., and Whealan, A.T. 2005. Simulated Water Sources and Effects of Pumping on Surface and Ground Water, Sagamore and Monomoy Flow Lenses, Cape Cod, Massachusetts: U.S. Geological Survey Scientific Investigations Report 2004-5181, 85 p.

FIGURES

This map is for informational purposes and may not be suitable for legal, engineering, or surveying purposes.

This map is for informational purposes and may not be suitable for legal, engineering, or surveying purposes.

This map is for informational purposes and may not be suitable for legal, engineering, or surveying purposes.

OAK CREST COVE Boat Ramp Cape Cod Boat Ramp Stormwater Retrofit Project Sandwich, MA

Shoreline

Wetland Limit

Figure 3 Constraints

Date: 8/24/2023 Data Sources: Bureau of Geographic Information (MassGIS), ESRI

This map is for informational purposes and may not be suitable for legal, engineering, or surveying purposes.

- Oak Crest Boat Ramp
- Town Parcels
- 2018/2020 Integrated List Data
 - 4A Impaired TMDL is completed
- Municipal Boundary

or surveying purposes.

APPENDIX A – Drainage Areas

- Existing and Proposed Drainage Areas Maps
- Land Coverage Summaries

	Iorsley Witten Group, Inc. ustainable Environmental Solutions 0 Route 6A Sandwich, MA 02563 orsleywittengroup.com	te: Design By: Drawn By: Checked By: JLV JLV MW
DA2 0.79 0.21 SV SP2 SP2 80 80 80 80 90 10 10 10 10 10 10 10 10 10 1	Reference OAK CREST COVE F CAPE COD BOAT RAMP STORMWATER RETROFIT PROJECT- PERMITTING PLANS SANDWICH, MA	Pentite: EXISTING DRAINAGE AREA MAP
SOIL TYPES	Prepared For: Town of Sandwich 500 Rte, 130 Sandwich, MA Phone: 508-833-8003	
 242D HINCKLEY LOAMY SAND 15 TO 35 PERCENT SLOPES (HSG A) 265A ENFIELD SILT LOAM 0 TO 3 PERCENT SLOPES (HSG B) 	Project Number: 22032 Sheet Number: 1 of 2	

	Horsley Witten Group, Inc. Sustainable Environmental Solutions 90 Route 6A Sandwich, MA 02563 horsleywittengroup.com Desgrifty 2000 and Provided Br
SP2	PRIN Set OAK CREST COVE CAPE COD BOAT RAMP STORMWATER RETROFIT PROJECT- PERMITTING PLANS SANDWICH, MA PROPOSED DRAINAGE AREA MAP
SP1	Prepared For: Town of Sandwich 500 Rte. 130 Sandwich, MA Phone: 508-833-8003
SOIL TYPES242DHINCKLEY LOAMY SAND 15 TO 35 PERCENT SLOPES (HSG A)265AENFIELD SILT LOAM 0 TO 3 PERCENT SLOPES (HSG B)	Project Number: 22032 Sheet Number: 2 of 2

CAPE COD BOAT RAMPS- OAKCREST	Calc'd by:	JLV
SANDWICH, MA	Checked by:	MW
Existing Drainage Conditions	Date:	9/20/2023

DRAINAGE AREAS				
DA1	BOAT RAMP			
DA2	PARKING LOT- EAST			

NOAA 14+			
24-hr Type III	(inches)		
WQv	1.21		
1-yr	3.09		
2-yr	3.65		
5-yr	4.58		
10-yr	5.36		
25-yr	6.62		
100-yr	8.62		
500-yr	11.43		

DA1	BOAT RAMP					
Cover type	Area, ft ²	Area <i>, ac</i>	Note			
Paved (HSG A)	40,784	0.94]		
Paved (HSG B)	10,717	0.25				
Permeable	0	0.00				
Roof (HSG A)	3,286	0.08				
Roof (HSG B)*	4,320	0.10				
Water	0	0.00				
Woods (HSG A)	187,244	4.30				
Woods (HSG B)	146,058	3.35			Impervious	
Grass (HSG A)	18,062	0.41		Area, ft ² *	Area, ac *	Percent
TOTAL	410,471	9.42		54,787	1.26	13

*unconnected impervious area not included in total impervious area (total = 1.36 acres).

DA2	PARKING LOT					
Cover type	Area, <i>ft</i> ²	Area <i>, ac</i>	Note			
Paved (HSG A)	8,187	0.19]		
Permeable	0	0.00				
Roof (HSG A)	0	0.00				
Water	0	0.00				
Woods (HSG A)	985	0.02			Impervious	
Grass (HSG A)	0	0.00		Area, ft ²	Area, ac	Percent
TOTAL	9,172	0.21		8,187	0.19	89

ALL	ALL EXISTING AREAS COMBINED					
Cover type	Area, <i>ft</i> ²	Area, ac	Note			
Paved (HSG A)	48,971	1.12]		
Paved (HSG B)	10,717	0.25				
Permeable	0	0.00				
Roof (HSG A)	3,286	0.08				
Roof (HSG B)*	4,320	0.10				
Water	0	0.00				
Woods (HSG A)	188,229	4.32				
Woods (HSG B)	146,058	3.35			Impervious	
Grass (HSG A)	18,062	0.41		Area, ft ²	Area, <i>ac</i>	Percent
TOTAL	419,643	9.63		62,974	1.45	15

CAPE COD BOAT RAMPS- OAKCREST	Calc'd by:	JV
SANDWICH, MA	Checked by:	MW
Proposed Drainage Conditions	Date:	10/30/2023

DRAINAGE AREAS			
DA1A	SUMMER CAMP		
DA1B	WOODS		
DA1C	BOAT RAMP		
DA2	PARKING LOT-EAST		

NOAA 14+					
24-hr Type	24-hr Type III (inches)				
WQv	1.21				
1-yr	3.09				
2-yr	3.65				
5-yr	4.58				
10-yr	5.36				
25-yr	6.62				
100-yr	8.62				
500-yr	11.43				

DA1A	SUMMER CAMP					
Cover type	Area, <i>ft</i> ²	Area, <i>ac</i>	Note			
Paved (HSG A)	13,148	0.30				
Paved (HSG B)	10,717	0.25				
Permeable	0	0.00				
Roof (HSG A)*	588	0.01				
Roof (HSG B)*	4,320	0.10				
Water	1,201	0.03				
Woods (HSG A)	122,375	2.81				
Woods (HSG B)	146,058	3.35			Impervious	
Grass (HSG A)	0	0.00		Area, <i>ft</i> ² *	Area, ac *	Percent
TOTAL	298,407	6.85		23,865	0.55	8

*unconnected impervious area not included in total impervious area (total = 0.69 acres).

DA1B	WOODS					
Cover type	Area, ft ²	Area <i>, ac</i>	Note			
Paved (HSG A)	0	0.00				
Permeable	0	0.00				
Roof (HSG A)	0	0.00				
Water	0	0.00				
Woods (HSG A)	19,988	0.46			Impervious	
Grass (HSG A)	0	0.00		Area, <i>ft</i> ²	Area <i>, ac</i>	Percent
TOTAL	19,988	0.46		0	0.00	0

DA1C	BOAT RAMP					
Cover type	Area, <i>ft</i> ²	Area <i>, ac</i>	Note			
Paved (HSG A)	13,758	0.32				
Permeable	14,907	0.34				
Roof (HSG A)	2,698	0.06				
Water	0	0.00		7		
Woods (HSG A)	43,640	1.00		Impervious		
Grass (HSG A)	19,021	0.44		Area, <i>ft</i> ²	Area, ac	Percent
TOTAL	94,024	2.16		16,456	0.38	18

DA2	PARKING LOT-EAST					
Cover type	Area, <i>ft</i> ²	Area <i>, ac</i>	Note			
Paved (HSG A)	0	0.00				
Permeable	7,221	0.17				
Roof (HSG A)	0	0.00				
Water	0	0.00				
Woods (HSG A)	0	0.00		Impervious		
Grass (HSG A)	0	0.00		Area, <i>ft</i> ²	Area, ac	Percent
TOTAL	7,221	0.17		0	0.00	0

ALL	ALL PROPOSED AREAS COMBINED					
Cover type	Area, <i>ft</i> ²	Area <i>, ac</i>	Area, ac Note			
Paved (HSG A)	26,906	0.62				
Paved (HSG B)	10,717	0.25				
Permeable	22,128	0.51				
Roof (HSG A)	3,286	0.08				
Roof (HSG B)*	4,320	0.10				
Water	1,201	0.03				
Woods (HSG A)	186,003	4.27				
Woods (HSG B)	146,058	3.35			Impervious	
Grass (HSG A)	19,021	0.44		Area, <i>ft</i> ²	Area, ac	Percent
TOTAL	419,640	9.63		40,909	0.94	10

APPENDIX B – Hydrologic/Hydraulic Model Results

HydroCAD® Results

- Existing
- Proposed

							<i>•••••••</i> ,	
Event#	Event	Storm Type	Curve	Mode	Duration	B/B	Depth	AMC
	Name				(hours)		(inches)	
1	WQV	Type III 24-hr		Default	24.00	1	1.21	2

Rainfall Events Listing (selected events)

Prepared by Horsley Witten Inc HydroCAD® 10.20-2g s/n 01445 © 2022 HydroCAD Software Solutions LLC

Area Listing (all nodes)

Area	a CN	Description
(acres	;)	(subcatchment-numbers)
0.41	5 39	>75% Grass cover, Good, HSG A (DA1)
1.124	4 98	Paved parking, HSG A (DA1, DA2)
0.24	6 98	Paved parking, HSG B (DA1)
0.07	5 98	Unconnected roofs, HSG A (DA1)
0.09	9 98	Unconnected roofs, HSG B (DA1)
4.32	1 30	Woods, Good, HSG A (DA1, DA2)
3.35	3 55	Woods, Good, HSG B (DA1)
9.63	4 50	TOTAL AREA

Prepared by Horsle	ey Witten	Inc			
HydroCAD® 10.20-2g	s/n 01445	© 2022 H	droCAD	Software	Solutions LL

Ground	Covers	(all nodes)
Ciouna	001010	(an noaco)

HSG-A (acres)	HSG-B (acres)	HSG-C (acres)	HSG-D (acres)	Other (acres)	Total (acres)	Ground Cover	Subcatchment Numbers
 0.415	0.000	0.000	0.000	0.000	0.415	>75% Grass cover, Good	DA1
1.124	0.246	0.000	0.000	0.000	1.370	Paved parking	DA1, DA2
0.075	0.099	0.000	0.000	0.000	0.175	Unconnected roofs	DA1
4.321	3.353	0.000	0.000	0.000	7.674	Woods, Good	DA1, DA2
5.935	3.698	0.000	0.000	0.000	9.634	TOTAL AREA	

22032 OAKCREST EX	Type III 24-hr WQV Rainfall=1.21"
Prepared by Horsley Witten Inc	Printed 9/28/2023
HydroCAD® 10.20-2g s/n 01445 © 2022 H	vdroCAD Software Solutions LLC Page 5
Time span=5 Runoff by SCS TR-20 meth Reach routing by Stor-Ind [.]	.00-20.00 hrs, dt=0.05 hrs, 301 points od, UH=SCS, Split Pervious/Imperv. UI as Pervious +Trans method - Pond routing by Stor-Ind method
Subcatchment DA1: Boat Ramp	Runoff Area=410.471 sf 12.55% Impervious Runoff Depth>0.12"
FI	ow Length=1,173' Tc=35.8 min CN=42/98 Runoff=0.69 cfs 0.092 af
Subcatchment DA2: Parking lot	Runoff Area=9,172 sf 89.26% Impervious Runoff Depth>0.84" Tc=5.0 min CN=30/98 Runoff=0.21 cfs 0.015 af
Pond SP1: Boat ramp	Inflow=0.69 cfs_0.092 af
	Primary=0.69 cfs 0.092 af
Pond SP2: Beach	Inflow=0.21 cfs 0.015 af
	Primary=0.21 cfs 0.015 af
Total Runoff Area = 9.63	4 ac Runoff Volume = 0.107 af Average Runoff Depth = 0.13" 85.78% Pervious = 8.263 ac 14.22% Impervious = 1.370 ac

Runoff = 0.69 cfs @ 12.47 hrs, Volume= 0.092 af, Depth> 0.12" Routed to Pond SP1 : Boat ramp

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv. UI as Pervious, Time Span= 5.00-20.00 hrs, dt= 0.05 Type III 24-hr WQV Rainfall=1.21"

A	rea (sf)	CN	Description				
	40,784	98	Paved parking, HSG A				
	10,717	98	Paved park	ing, HSG B			
	3,286	98	Unconnecte	ed roofs, HS	SG A		
	4,320	98	Unconnecte	ed roofs, HS	SG B		
	18,062	39 :	>75% Gras	s cover, Go	ood, HSG A		
1	46,058	55	Woods, Go	od, HSG B			
1	87,244	30	Woods, Go	od, HSG A			
4	10,471	49	Weighted A	verage			
3	58,970	42	37.45% Pei	vious Area			
	51,501	98	12.55% Imp	pervious Are	ea		
Tc	Length	Slope	Velocity	Capacity	Description		
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
26.5	100	0.0100	0.06		Sheet Flow,		
					Woods: Light underbrush n= 0.400 P2= 3.65"		
7.7	730	0.1000	1.58		Shallow Concentrated Flow,		
					Woodland Kv= 5.0 fps		
1.6	343	0.0300	3.52		Shallow Concentrated Flow,		
					Paved Kv= 20.3 fps		
35.8	1,173	Total					

Summary for Subcatchment DA2: Parking lot

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.21 cfs @ 12.07 hrs, Volume= 0.015 af, Depth> 0.84" Routed to Pond SP2 : Beach

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv. UI as Pervious, Time Span= 5.00-20.00 hrs, dt= 0.05 Type III 24-hr WQV Rainfall=1.21"

 Area (sf)	CN	Description
8,187	98	Paved parking, HSG A
 985	30	Woods, Good, HSG A
9,172	91	Weighted Average
985	30	10.74% Pervious Area
8,187	98	89.26% Impervious Area

Type III 24-hr WQV Rainfall=1.21" Printed 9/28/2023 LC Page 7

Prepared by Horsley Witten	Inc
HydroCAD® 10.20-2g s/n 01445	© 2022 HydroCAD Software Solutions LLC

Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
5.0					Direct Entry,				
	Summary for Pond SP1: Boat ramp								
[40]	401 Lint Net December of (Outflow-Inflow)								

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area	a =	9.423 ac, <i>1</i>	12.55% Imp	ervious,	Inflow	Depth >	0.1	2" for	WQV	ever	nt
Inflow	=	0.69 cfs @	12.47 hrs,	Volume	=	0.092	af				
Primary	=	0.69 cfs @	12.47 hrs,	Volume	=	0.092	af,	Atten= 0	%, La	ag= ().0 min

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Summary for Pond SP2: Beach

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area	a =	0.211 ac, 3	89.26% Impe	ervious,	Inflow De	epth > 0	.84" fo	r WG	V event	
Inflow	=	0.21 cfs @	12.07 hrs,	Volume	=	0.015 at	F			
Primary	=	0.21 cfs @	12.07 hrs,	Volume	=	0.015 at	f, Atten=	0%,	Lag= 0.0	min

Event#	Event	Storm Type	Curve	Mode	Duration	B/B	Depth	AMC
	Name				(hours)		(inches)	
1	2 yr	Type III 24-hr		Default	24.00	1	3.65	2
2	10 yr	Type III 24-hr		Default	24.00	1	5.36	2
3	25 yr	Type III 24-hr		Default	24.00	1	6.62	2
4	100 yr	Type III 24-hr		Default	24.00	1	8.62	2

Rainfall Events Listing (selected events)

Prepared by Horsley Witten Inc HydroCAD® 10.20-2g s/n 01445 © 2022 HydroCAD Software Solutions LLC

Area Listing (all nodes)

Area	a CN	Description
(acres	;)	(subcatchment-numbers)
0.41	5 39	>75% Grass cover, Good, HSG A (DA1)
1.124	4 98	Paved parking, HSG A (DA1, DA2)
0.24	6 98	Paved parking, HSG B (DA1)
0.07	5 98	Unconnected roofs, HSG A (DA1)
0.09	9 98	Unconnected roofs, HSG B (DA1)
4.32	1 30	Woods, Good, HSG A (DA1, DA2)
3.35	3 55	Woods, Good, HSG B (DA1)
9.63	4 50	TOTAL AREA

Prepared by Horsle	ey Witten	Inc			
HydroCAD® 10.20-2g	s/n 01445	© 2022 H	droCAD	Software	Solutions LL

Ground	Covers	(all nodes)
Ciouna	001010	(an noaco)

HSG-A (acres)	HSG-B (acres)	HSG-C (acres)	HSG-D (acres)	Other (acres)	Total (acres)	Ground Cover	Subcatchment Numbers
 0.415	0.000	0.000	0.000	0.000	0.415	>75% Grass cover, Good	DA1
1.124	0.246	0.000	0.000	0.000	1.370	Paved parking	DA1, DA2
0.075	0.099	0.000	0.000	0.000	0.175	Unconnected roofs	DA1
4.321	3.353	0.000	0.000	0.000	7.674	Woods, Good	DA1, DA2
5.935	3.698	0.000	0.000	0.000	9.634	TOTAL AREA	

22032 OAKCREST EX	Type III 24-hr 2 yr Rainfall=3.65"
Prepared by Horsley Witten Inc	Printed 9/28/2023
HydroCAD® 10.20-2g s/n 01445 © 2022 Hydro	oCAD Software Solutions LLC Page 5
Time span=5.00 Runoff by SCS TF Reach routing by Stor-Ind+Tr	0-20.00 hrs, dt=0.05 hrs, 301 points R-20 method, UH=SCS, Weighted-CN rans method - Pond routing by Stor-Ind method
Subcatchment DA1: Boat Ramp	Runoff Area=410,471 sf 14.40% Impervious Runoff Depth>0.16" ow Length=1,173' Tc=35.8 min CN=49 Runoff=0.39 cfs 0.128 af
Subcatchment DA2: Parking lot	Runoff Area=9,172 sf 89.26% Impervious Runoff Depth>2.53" Tc=5.0 min CN=91 Runoff=0.65 cfs 0.044 af
Pond SP1: Boat ramp	Inflow=0.39 cfs_0.128 af
	Primary=0.39 cfs 0.128 af
Pond SP2: Beach	Inflow=0.65 cfs_0.044 af
	Primary=0.65 cfs 0.044 af
Total Runoff Area = 9.634	ac Runoff Volume = 0.172 af Average Runoff Depth = 0.21" 83.96% Pervious = 8.089 ac 16.04% Impervious = 1.545 ac

Runoff = 0.39 cfs @ 12.90 hrs, Volume= 0.128 Routed to Pond SP1 : Boat ramp

0.128 af, Depth> 0.16"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2 yr Rainfall=3.65"

A	rea (sf)	CN	Description		
	40,784	98	Paved park	ing, HSG A	N Contraction of the second se
	10,717	98	Paved park	ing, HSG B	5
	3,286	98	Unconnecte	ed roofs, HS	SG A
	4,320	98	Unconnecte	ed roofs, HS	SG B
	18,062	39	>75% Gras	s cover, Go	bod, HSG A
1	46,058	55	Woods, Go	od, HSG B	
1	87,244	30	Woods, Go	od, HSG A	
4	10,471	49	Weighted A	verage	
3	51,364	41	85.60% Pei	vious Area	
	59,107	98	14.40% Imp	pervious Are	ea
	7,606		12.87% Un	connected	
Тс	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
26.5	100	0.0100	0.06		Sheet Flow,
					Woods: Light underbrush n= 0.400 P2= 3.65"
7.7	730	0.1000	1.58		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
1.6	343	0.0300	3.52		Shallow Concentrated Flow,
					Paved Kv= 20.3 fps
35.8	1,173	Total			

Summary for Subcatchment DA2: Parking lot

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.65 cfs @ 12.07 hrs, Volume= 0.044 af, Depth> 2.53" Routed to Pond SP2 : Beach

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2 yr Rainfall=3.65"

Area (sf)	CN	Description
8,187	98	Paved parking, HSG A
985	30	Woods, Good, HSG A
9,172	91	Weighted Average
985	30	10.74% Pervious Area
8,187	98	89.26% Impervious Area

 Type III 24-hr
 2 yr Rainfall=3.65"

 Printed
 9/28/2023

 .C
 Page 7

Prepared by Horsley Witten Inc HydroCAD® 10.20-2g s/n 01445 © 2022 HydroCAD Software Solutions LLC

Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
5.0					Direct Entry,
			Sum	mary for	Pond SP1: Boat ramp

[40] Hint: Not Described (Outflow=Inflow)

Inflow /	Area =	9.423 ac,	14.40% Imperviou	us, Inflow Depth >	0.16"	for 2 yr event	
Inflow	=	0.39 cfs @) 12.90 hrs, Volu	me= 0.128	af		
Primar	y =	0.39 cfs @	12.90 hrs, Volu	me= 0.128	af, Atte	en= 0%, Lag= 0	.0 min

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Summary for Pond SP2: Beach

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area	a =	0.211 ac, 8	89.26% Impe	ervious,	Inflow De	epth > 2	.53" fo	or 2 y	r event	
Inflow	=	0.65 cfs @	12.07 hrs,	Volume	=	0.044 af	F			
Primary	=	0.65 cfs @	12.07 hrs,	Volume	=	0.044 af	f, Atten=	= 0%,	Lag= 0.0 m	in

22032 OAKCREST EX	Type III 24-hr 10 yr Rainfall=5.36"
Prepared by Horsley Witten Inc	Printed 9/28/2023
HydroCAD® 10.20-2g s/n 01445 © 2022 Hyd	roCAD Software Solutions LLC Page 8
Time span=5.0 Runoff by SCS T Reach routing by Stor-Ind+T	0-20.00 hrs, dt=0.05 hrs, 301 points R-20 method, UH=SCS, Weighted-CN rans method - Pond routing by Stor-Ind method
Subcatchment DA1: Boat Ramp F	Runoff Area=410,471 sf 14.40% Impervious Runoff Depth>0.68" low Length=1,173' Tc=35.8 min CN=49 Runoff=3.18 cfs 0.530 af
Subcatchment DA2: Parking lot	Runoff Area=9,172 sf 89.26% Impervious Runoff Depth>4.10" Tc=5.0 min CN=91 Runoff=1.03 cfs 0.072 af
Pond SP1: Boat ramp	Inflow=3.18 cfs 0.530 af
	Primary=3.18 cfs 0.530 af
Pond SP2: Beach	Inflow=1.03 cfs 0.072 af
	Primary=1.03 cfs 0.072 af
Total Runoff Area = 9.634	ac Runoff Volume = 0.602 af Average Runoff Depth = 0.75" 83.96% Pervious = 8.089 ac 16.04% Impervious = 1.545 ac

Runoff = 3.18 cfs @ 12.64 hrs, Volume= 0.530 af, Depth> 0.68" Routed to Pond SP1 : Boat ramp

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10 yr Rainfall=5.36"

Ar	rea (sf)	CN	Description		
	40,784	98	Paved park	ing, HSG A	N N N N N N N N N N N N N N N N N N N
	10,717	98	Paved park	ing, HSG B	5
	3,286	98	Unconnecte	ed roofs, HS	SG A
	4,320	98	Unconnecte	ed roofs, HS	SG B
	18,062	39	>75% Gras	s cover, Go	bod, HSG A
14	46,058	55	Woods, Go	od, HSG B	
1	87,244	30	Woods, Go	od, HSG A	
4	10,471	49	Weighted A	verage	
3	51,364	41	85.60% Per	vious Area	
:	59,107	98	14.40% Imp	pervious Are	ea
	7,606		12.87% Un	connected	
Tc	Length	Slope	e Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
26.5	100	0.0100	0.06		Sheet Flow,
					Woods: Light underbrush n= 0.400 P2= 3.65"
7.7	730	0.1000	1.58		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
1.6	343	0.0300	3.52		Shallow Concentrated Flow,
					Paved Kv= 20.3 fps
35.8	1.173	Total			

Summary for Subcatchment DA2: Parking lot

[49] Hint: Tc<2dt may require smaller dt

Runoff = 1.03 cfs @ 12.07 hrs, Volume= 0.072 af, Depth> 4.10" Routed to Pond SP2 : Beach

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10 yr Rainfall=5.36"

Area (sf)	CN	Description
8,187	98	Paved parking, HSG A
985	30	Woods, Good, HSG A
9,172	91	Weighted Average
985	30	10.74% Pervious Area
8,187	98	89.26% Impervious Area

 Type III 24-hr
 10 yr Rainfall=5.36"

 Printed
 9/28/2023

 LC
 Page 10

Prepared by Horsley Witten Inc HydroCAD® 10.20-2g s/n 01445 © 2022 HydroCAD Software Solutions LLC

Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
5.0					Direct Entry,
			Sum	mary for	Pond SP1: Boat ramp

[40] Hint: Not Described (Outflow=Inflow)

Inflow .	Area =	9.423 ac,	14.40% Imp	ervious,	Inflow	Depth >	0.6	8" for	10	yr ever	nt
Inflow	=	3.18 cfs @	12.64 hrs,	Volume	=	0.530	af				
Primar	y =	3.18 cfs @	12.64 hrs,	Volume	=	0.530	af,	Atten=	J%,	Lag=	0.0 min

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Summary for Pond SP2: Beach

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	ea =	0.211 ac,	89.26% Imper	vious, Inflow	Depth > 4.10	' for 10 yr event
Inflow	=	1.03 cfs @	🕑 12.07 hrs, V	/olume=	0.072 af	-
Primary	=	1.03 cfs @	🕑 12.07 hrs, V	/olume=	0.072 af, A	tten= 0%, Lag= 0.0 min

22032 OAKCREST EX		Туре	III 24-hr 25	5 yr Rainfal	//=6.62"
Prepared by Horsley Witten Inc				Printed 9/2	28/2023
HydroCAD® 10.20-2g s/n 01445 © 2022 Hydro	CAD Software Solution	ons LLC		F	2 <u>age 11</u>
Time span=5.00 Runoff by SCS TR Reach routing by Stor-Ind+Tr	-20.00 hrs, dt=0.05 h -20 method, UH=SC ans method - Pond	nrs, 301 pc S, Weighte routing by	ints ed-CN Stor-Ind me	thod	
Subcatchment DA1: Boat Ramp	Runoff Area=410,471 ow Length=1,173' Tc=	l sf 14.40% =35.8 min	6 Impervious CN=49 Run	Runoff Dep off=6.59 cfs	th>1.21" 0.951 af
Subcatchment DA2: Parking lot	Runoff Area=9,172 To	2 sf 89.26% c=5.0 min	6 Impervious CN=91 Run	Runoff Dep off=1.30 cfs	th>5.26" 0.092 af
Pond SP1: Boat ramp			Inflo	ow=6.59 cfs	0.951 af
			Prima	ary=6.59 cfs	0.951 af
Pond SP2: Beach			Inflo	ow=1.30 cfs	0.092 af
			Prima	ary=1.30 cfs	0.092 af
Total Runoff Area = 9.634 a	ac Runoff Volume = 83.96% Pervious = 8	= 1.043 af 8.089 ac	Average F 16.04% Im	Runoff Dep pervious =	th = 1.30" 1.545 ac

Runoff = 6.59 cfs @ 12.59 hrs, Volume= 0 Routed to Pond SP1 : Boat ramp

0.951 af, Depth> 1.21"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25 yr Rainfall=6.62"

A	rea (sf)	CN I	Description		
	40,784	98 I	Paved park	ing, HSG A	N
	10,717	98 I	⊃aved park	ing, HSG B	3
	3,286	98 I	Jnconnecte	ed roofs, HS	SG A
	4,320	98 I	Jnconnecte	ed roofs, HS	SG B
	18,062	39 :	>75% Gras	s cover, Go	bod, HSG A
1	46,058	55	Noods, Go	od, HSG B	
1	87,244	30 \	Noods, Go	od, HSG A	
4	10,471	49 V	Neighted A	verage	
3	51,364	41 8	35.60% Pei	vious Area	
	59,107	98 ⁻	14.40% Imp	pervious Ar	ea
	7,606		12.87% Un	connected	
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
26.5	100	0.0100	0.06		Sheet Flow,
					Woods: Light underbrush n= 0.400 P2= 3.65"
7.7	730	0.1000	1.58		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
1.6	343	0.0300	3.52		Shallow Concentrated Flow,
					Paved Kv= 20.3 fps
35.8	1,173	Total			

Summary for Subcatchment DA2: Parking lot

[49] Hint: Tc<2dt may require smaller dt

Runoff = 1.30 cfs @ 12.07 hrs, Volume= 0.092 af, Depth> 5.26" Routed to Pond SP2 : Beach

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25 yr Rainfall=6.62"

Area (sf)	CN	Description
8,187	98	Paved parking, HSG A
985	30	Woods, Good, HSG A
9,172	91	Weighted Average
985	30	10.74% Pervious Area
8,187	98	89.26% Impervious Area

 Type III 24-hr
 25 yr Rainfall=6.62"

 Printed
 9/28/2023

 LC
 Page 13

Prepared by Horsley Witten Inc HydroCAD® 10.20-2g s/n 01445 © 2022 HydroCAD Software Solutions LLC

Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description		
5.0					Direct Entry,		
Summary for Pond SP1: Boat ramp							

[40] Hint: Not Described (Outflow=Inflow)

Inflow /	Area =	9.423 ac,	14.40% Imp	ervious,	Inflow	Depth >	1.2	21" for	25 yı	r even	t
Inflow	=	6.59 cfs @) 12.59 hrs,	Volume	=	0.951	af		-		
Primar	y =	6.59 cfs @) 12.59 hrs,	Volume	=	0.951	af,	Atten= 0)%, L	_ag= C).0 min

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Summary for Pond SP2: Beach

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	ea =	0.211 ac, 8	9.26% Impe	ervious,	Inflow De	pth > 5.2	26" for 25	yr event
Inflow	=	1.30 cfs @	12.07 hrs,	Volume	=	0.092 af		-
Primary	=	1.30 cfs @	12.07 hrs,	Volume	=	0.092 af,	Atten= 0%	, Lag= 0.0 min

22032 OAKCREST EX	Type III 24-hr 100 yr Rainfall=8.62"
Prepared by Horsley Witten Inc	Printed 9/28/2023
HydroCAD® 10.20-2g s/n 01445 © 2022 HydroC	AD Software Solutions LLC Page 14
Time span=5.00-2 Runoff by SCS TR-2 Reach routing by Stor-Ind+Trar	0.00 hrs, dt=0.05 hrs, 301 points 0 method, UH=SCS, Weighted-CN ns method - Pond routing by Stor-Ind method
Subcatchment DA1: Boat Ramp Flow	Runoff Area=410,471 sf 14.40% Impervious Runoff Depth>2.26" Length=1,173' Tc=35.8 min CN=49 Runoff=13.39 cfs 1.773 af
Subcatchment DA2: Parking lot	Runoff Area=9,172 sf 89.26% Impervious Runoff Depth>7.10" Tc=5.0 min CN=91 Runoff=1.73 cfs 0.125 af
Pond SP1: Boat ramp	Inflow=13.39 cfs 1.773 af Primary=13.39 cfs 1.773 af
Pond SP2: Beach	Inflow=1.73 cfs 0.125 af Primary=1.73 cfs 0.125 af
Total Runoff Area = 9.634 ac 83	Runoff Volume = 1.898 af Average Runoff Depth = 2.36" 8.96% Pervious = 8.089 ac 16.04% Impervious = 1.545 ac

Runoff = 13.39 cfs @ 12.55 hrs, Volume= Routed to Pond SP1 : Boat ramp 1.773 af, Depth> 2.26"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 100 yr Rainfall=8.62"

A	rea (sf)	CN	Description								
	40,784	98	Paved parking, HSG A								
	10,717	98	Paved park	aved parking, HSG B							
	3,286	98	Unconnecte	ed roofs, HS	SG A						
	4,320	98 Unconnected roofs, HSG B									
	18,062	39	>75% Gras	s cover, Go	bod, HSG A						
1	46,058	55	Woods, Go	od, HSG B							
1	87,244	30	Woods, Go	od, HSG A							
410.471 49 Weighted Average											
351,364 41 85.60% Pervious Area			85.60% Pei	vious Area							
59,107 98 14.40% Impervious Are				pervious Ar	ea						
7,606 12.87% Unconnected				connected							
Тс	Length	Slope	Velocity	Capacity	Description						
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)							
26.5	100	0.0100	0.06		Sheet Flow,						
					Woods: Light underbrush n= 0.400 P2= 3.65"						
7.7	730	0.1000	1.58		Shallow Concentrated Flow,						
					Woodland Kv= 5.0 fps						
1.6	343	0.0300	3.52		Shallow Concentrated Flow,						
					Paved Kv= 20.3 fps						
35.8	1,173	Total									

Summary for Subcatchment DA2: Parking lot

[49] Hint: Tc<2dt may require smaller dt

Runoff = 1.73 cfs @ 12.07 hrs, Volume= 0.125 af, Depth> 7.10" Routed to Pond SP2 : Beach

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 100 yr Rainfall=8.62"

Area (sf)	CN	Description
8,187	98	Paved parking, HSG A
985	30	Woods, Good, HSG A
9,172	91	Weighted Average
985	30	10.74% Pervious Area
8,187	98	89.26% Impervious Area

Type III 24-hr 100 yr Rainfall=8.62" Printed 9/28/2023 LLC Page 16

Prepared by Horsley Witten	Inc
HydroCAD® 10.20-2g s/n 01445	© 2022 HydroCAD Software Solutions LLC

Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
5.0					Direct Entry,	
Summary for Pond SP1: Boat ramp						

[40] Hint: Not Described (Outflow=Inflow)

Inflow /	Area =		9.423 ac,	14.40% Imp	ervious,	Inflow	Depth >	2.2	26" for	100) yr eve	ent
Inflow	=	-	13.39 cfs @	12.55 hrs,	Volume	=	1.773	af			-	
Primar	y =	-	13.39 cfs @	12.55 hrs,	Volume	=	1.773	af,	Atten=	0%,	Lag= ().0 min

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Summary for Pond SP2: Beach

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	ea =	0.211 ac,	89.26% Imper	rvious, Inf	low Depth >	7.10"	for 100) yr event
Inflow	=	1.73 cfs @) 12.07 hrs, ∖	Volume=	0.125 a	af		-
Primary	=	1.73 cfs @) 12.07 hrs, ∖	Volume=	0.125 a	af, Atte	en= 0%,	Lag= 0.0 min

		Ra		vents Lis	sung (sei	ectea	events)	
Event#	Event	Storm Type	Curve	Mode	Duration	B/B	Depth	AMC
	Name				(hours)		(inches)	
 1	WQV	Type III 24-hr		Default	24.00	1	1.21	2

Rainfall Events Listing (selected events)

22032 OAKCREST PR

Prepared by Horsley Witten Inc HydroCAD® 10.20-2g s/n 01445 © 2022 HydroCAD Software Solutions LLC

Area Listing (all nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
0.437	39	>75% Grass cover, Good, HSG A (DA1C)
0.618	98	Paved parking, HSG A (DA1A, DA1C)
0.246	98	Paved parking, HSG B (DA1A)
0.342	40	Permeable pavers (DA1C)
0.166	40	Permeable pavers, HSG A (DA2)
0.062	98	Roofs, HSG A (DA1C)
0.013	98	Unconnected roofs, HSG A (DA1A)
0.099	98	Unconnected roofs, HSG B (DA1A)
0.028	98	Water Surface, HSG A (DA1A)
4.270	30	Woods, Good, HSG A (DA1A, DA1B, DA1C)
3.353	55	Woods, Good, HSG B (DA1A)
9.634	47	TOTAL AREA

22032 OAKCREST PR

Prepared by Horsley Witten Inc HydroCAD® 10.20-2g s/n 01445 © 2022 HydroCAD Software Solutions LLC

Printed 10/30/2023 Page 4

HSG-A	HSG-B	HSG-C	HSG-D	Other	Total	Ground	Subcatchment
 (acres)	(acres)	(acres)	(acres)	(acres)	(acres)	Cover	Numbers
 0.437	0.000	0.000	0.000	0.000	0.437	>75% Grass cover, Good	DA1C
0.618	0.246	0.000	0.000	0.000	0.864	Paved parking	DA1A,
							DA1C
0.166	0.000	0.000	0.000	0.342	0.508	Permeable pavers	DA1C,
							DA2
0.062	0.000	0.000	0.000	0.000	0.062	Roofs	DA1C
0.013	0.099	0.000	0.000	0.000	0.113	Unconnected roofs	DA1A
0.028	0.000	0.000	0.000	0.000	0.028	Water Surface	DA1A
4.270	3.353	0.000	0.000	0.000	7.623	Woods, Good	DA1A,
							DA1B,
							DA1C
5.593	3.698	0.000	0.000	0.342	9.634	TOTAL AREA	

Ground Covers (all nodes)

22032 OAKCREST PR Prepared by Horsley Witten Inc	Type III 24-hr WQV Rainfall=1.21" Printed 10/30/2023
HvdroCAD® 10.20-2g s/n 01445 © 2022 HvdroCA	AD Software Solutions LLC Page 5
Time span=1.00-72 Runoff by SCS TR-20 method, UI Reach routing by Stor-Ind+Trans	.00 hrs, dt=0.05 hrs, 1421 points H=SCS, Split Pervious/Imperv. UI as Pervious s method . Pond routing by Stor-Ind method
Subcatchment DA1A: Summer Camp Flow L	Runoff Area=298,408 sf 8.40% Impervious Runoff Depth=0.08" ength=810' Tc=31.6 min CN=45/98 Runoff=0.35 cfs 0.048 af
Subcatchment DA1B: Woods Flow Length=182' Slo	Runoff Area=19,988 sf 0.00% Impervious Runoff Depth=0.00" ope=0.1600 '/' Tc=9.5 min CN=30/0 Runoff=0.00 cfs 0.000 af
SubcatchmentDA1C: Boat Ramp F Flow Length=327' Slope	Runoff Area=94,024 sf 17.50% Impervious Runoff Depth=0.17" e=0.1000 '/' Tc=11.2 min CN=34/98 Runoff=0.35 cfs 0.031 af
Subcatchment DA2: Parking lot east	Runoff Area=7,221 sf 0.00% Impervious Runoff Depth=0.00" Tc=5.0 min CN=40/0 Runoff=0.00 cfs 0.000 af
Pond 100: Diversion structure Primary=0.35 cfs 0.0	Peak Elev=84.97' Inflow=0.35 cfs 0.046 af 946 af Secondary=0.00 cfs 0.000 af Outflow=0.35 cfs 0.046 af
Pond BIO1: Bioretention 1 Discarded=0.09 cfs 0.046 af Primary=0.00 cfs 0.0	Peak Elev=82.46' Storage=638 cf Inflow=0.35 cfs 0.046 af 000 af Secondary=0.00 cfs 0.000 af Outflow=0.09 cfs 0.046 af
Pond D1: Infiltration Basin 1 Discarded=0.00 cfs 0.000 af Primary=0.00 cfs 0.0	Peak Elev=78.50' Storage=0 cf Inflow=0.00 cfs 0.000 af 000 af Secondary=0.00 cfs 0.000 af Outflow=0.00 cfs 0.000 af
Pond F1: Forebay	Peak Elev=100.57' Storage=82 cf Inflow=0.35 cfs 0.048 af Outflow=0.35 cfs 0.046 af
Pond I1: Inlet Flume	Peak Elev=103.09' Storage=9 cf Inflow=0.35 cfs 0.048 af Outflow=0.35 cfs 0.048 af
Pond RB1: Perf Pipe/RB Discarded=0.00 cfs	Peak Elev=69.30' Storage=0 cf Inflow=0.00 cfs 0.000 af 0.000 af Primary=0.00 cfs 0.000 af Outflow=0.00 cfs 0.000 af
Pond SP1: Boat ramp	Inflow=0.35 cfs 0.031 af Primary=0.35 cfs 0.031 af
Pond SP2: Beach	Inflow=0.00 cfs 0.000 af Primary=0.00 cfs 0.000 af
Total Runoff Area = 9.634 ac	Runoff Volume = 0.079 af Average Runoff Depth = 0.10

f Area = 9.634 ac Runoff Volume = 0.079 af Average Runoff Depth = 0.10" 90.11% Pervious = 8.680 ac 9.89% Impervious = 0.953 ac
Summary for Subcatchment DA1A: Summer Camp

Runoff = 0.35 cfs @ 12.42 hrs, Volume= 0.048 af, Depth= 0.08" Routed to Pond I1 : Inlet Flume

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv. UI as Pervious, Time Span= 1.00-72.00 hrs, dt= 0.05 Type III 24-hr WQV Rainfall=1.21"

Area (sf)	CN	Description		
10,717	98	Paved park	ing, HSG B	3
13,149	98	Paved park	ing, HSG A	N .
588	98	Unconnecte	ed roofs, H	SG A
4,320	98	Unconnecte	ed roofs, H	SG B
146,058	55	Woods, Go	od, HSG B	
122,375	30	Woods, Go	od, HSG A	
1,201	98	Water Surfa	ace, HSG A	Ν
298,408	49	Weighted A	verage	
273,341	45	91.60% Pe	rvious Area	
25,067	98	8.40% Impe	ervious Area	а
Tc Lengt	h Slop	be Velocity	Capacity	Description
(min) (fee	:) (ft/	ft) (ft/sec)	(cfs)	
26.5 10	0.010	0.06		Sheet Flow,
				Woods: Light underbrush n= 0.400 P2= 3.65"
3.5 15	0.020	0.71		Shallow Concentrated Flow,
				Woodland Kv= 5.0 fps
1.6 56	0.080	0 5.74		Shallow Concentrated Flow,
				Paved Kv= 20.3 fps
31.6 81	0 Total			

Summary for Subcatchment DA1B: Woods

[45] Hint: Runoff=Zero

Runoff = 0.00 cfs @ 1.00 hrs, Volume= 0.000 af, Depth= 0.00" Routed to Pond D1 : Infiltration Basin 1

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv. UI as Pervious, Time Span= 1.00-72.00 hrs, dt= 0.05 Type III 24-hr WQV Rainfall=1.21"

A	rea (sf)	CN E	Description		
	19,988	30 V	Voods, Go	od, HSG A	
	19,988	30 1	00.00% Pe	ervious Are	a
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
8.8	100	0.1600	0.19		Sheet Flow,
0.7	82	0.1600	2.00		Woods: Light underbrush n= 0.400 P2= 3.65" Shallow Concentrated Flow, Woodland Kv= 5.0 fps
9.5	182	Total			

Summary for Subcatchment DA1C: Boat Ramp

Runoff = 0.35 cfs @ 12.15 hrs, Volume= 0.031 af, Depth= 0.17" Routed to Pond SP1 : Boat ramp

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv. UI as Pervious, Time Span= 1.00-72.00 hrs, dt= 0.05 Type III 24-hr WQV Rainfall=1.21"

	Area (sf)	CN	Des	cription						
	43,640	30	Woo	ods, Goo	od, HSG A					
	2,698	98	Roo	ofs, HSG	iΑ					
	13,758	98	Pav	ed parki	ing, HSG A	N N N N N N N N N N N N N N N N N N N				
	19,021	39	>75	•75% Grass cover, Good, HSG A						
*	14,907	40	Peri	meable	pavers					
	94,024	45	Wei	ghted A	verage					
	77,568	34	82.5	50% Per	vious Area					
	16,456	98	17.5	50% Imp	ervious Are	ea				
-	Tc Lengtł	n Sloj	pe V	elocity/	Capacity	Description				
(mi	in) (feet) (ft/	′ft)	(ft/sec)	(cfs)					
10).6 100	0.10	00	0.16		Sheet Flow,				
						Woods: Light underbrush n= 0.400 P2= 3.65"				
0).6 227	7 0.10	00	6.42		Shallow Concentrated Flow,				
						Paved Kv= 20.3 fps				
11	.2 327	7 Tota								

Summary for Subcatchment DA2: Parking lot east

[49] Hint: Tc<2dt may require smaller dt [45] Hint: Runoff=Zero

Runoff = 0.00 cfs @ 1.00 hrs, Volume= 0.000 af, Depth= 0.00" Routed to Pond SP2 : Beach

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv. UI as Pervious, Time Span= 1.00-72.00 hrs, dt= 0.05 Type III 24-hr WQV Rainfall=1.21"

	Area (sf)	CN	Description		
*	7,221	40	Permeable	pavers, HS	SG A
	7,221	40	100.00% Pe	ervious Are	ea
	Tc Length	Slope	e Velocity	Capacity	Description
(mi	in) (feet)	(ft/ft) (ft/sec)	(cfs)	
5	5.0				Direct Entry,

Summary for Pond 100: Diversion structure

[57] Hint: Peaked at 84.97' (Flood elevation advised)

Inflow Area	=	6.851 ac,	8.40% Impe	ervious,	Inflow De	pth =	0.0	8" fo	r WG	V even	t
Inflow	=	0.35 cfs @	12.43 hrs,	Volume	=	0.046	af				
Outflow	=	0.35 cfs @	12.43 hrs,	Volume	=	0.046	af, /	Atten=	0%,	Lag= 0	.0 min
Primary	=	0.35 cfs @	12.43 hrs,	Volume	=	0.046	af			C C	
Routed	to Pond	BIO1 : Biore	tention 1								
Secondary	=	0.00 cfs @	1.00 hrs,	Volume	=	0.000	af				
Routed	to Pond	RB1 : Perf P	ipe/RB								

Routing by Stor-Ind method, Time Span= 1.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 84.97' @ 12.43 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	84.50'	6.0" Round To Bio L= 10.0' CMP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 84.50' / 84.00' S= 0.0500 '/' Cc= 0.900 n= 0.013 Concrete pipe bends & connections. Flow Area= 0.20 sf
#2	Device 3	82.00'	18.0" Round To overflow L= $60.0'$ CMP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= $82.00'$ / $78.00'$ S= $0.0667'$ // Cc= 0.900 n= 0.013 Concrete pipe bends & connections. Flow Area= 1.77 sf
#3	Secondary	85.00'	4.0' long x 0.5' breadth Weir in structure Head (feet) 0.20 0.40 0.60 0.80 1.00 Coef. (English) 2.80 2.92 3.08 3.30 3.32

Primary OutFlow Max=0.35 cfs @ 12.43 hrs HW=84.97' (Free Discharge) —1=To Bio (Inlet Controls 0.35 cfs @ 1.84 fps)

Secondary OutFlow Max=0.00 cfs @ 1.00 hrs HW=82.00' (Free Discharge) -3=Weir in structure (Controls 0.00 cfs) -2=To overflow (Controls 0.00 cfs)

Summary for Pond BIO1: Bioretention 1

Inflow Area	ı =	6.851 ac,	8.40% Impe	ervious,	Inflow Depth	n = 0.	08" fo	r WQ\	/ event
Inflow	=	0.35 cfs @	12.43 hrs,	Volume	= 0.0	046 af			
Outflow	=	0.09 cfs @	13.19 hrs,	Volume	= 0.0	046 af,	Atten=	: 75%,	Lag= 45.7 min
Discarded	=	0.09 cfs @	13.19 hrs,	Volume	= 0.0	046 af			•
Primary	=	0.00 cfs @	1.00 hrs,	Volume	= 0.0	000 af			
Routed to Pond RB1 : Perf Pipe/RB									
Secondary	=	0.00 cfs @	1.00 hrs,	Volume	= 0.0	000 af			
Routed	to Pond	D1 : Infiltrati	on Basin 1						

Routing by Stor-Ind method, Time Span= 1.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 82.46' @ 13.19 hrs Surf.Area= 1,569 sf Storage= 638 cf

Plug-Flow detention time= 55.7 min calculated for 0.046 af (100% of inflow) Center-of-Mass det. time= 55.6 min (876.3 - 820.6)

Type III 24-hr	WQV Ra	infall=1.21"
	Printed	10/30/2023
LC		Page 9

Prepared by Horsley Witten	Inc
HydroCAD® 10.20-2g s/n 01445	© 2022 HydroCAD Software Solutions LL

#1 82.00' 2,825 cf Custom Stage Data (Prismatic)Listed below (Recalc) Elevation (feet) Surf.Area (sq-ft) Inc.Store (cubic-feet) Cum.Store (cubic-feet)	
ElevationSurf.AreaInc.StoreCum.Store(feet)(sq-ft)(cubic-feet)(cubic-feet)	
82.001,2000082.501,60070070083.002,2009501,65083.502,5001,1752,825	
Device Routing Invert Outlet Devices	
#1 Primary 82.50' 24.0" Horiz. Orifice/Grate C= 0.600 Limited to weir flow at low heads	
#2 Secondary 82.75' 8.0' long x 0.5' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 Coef. (English) 2.80 2.92 3.08 3.30 3.32	
#3 Discarded 82.00' 2.410 in/hr Exfiltration over Surface area	

Discarded OutFlow Max=0.09 cfs @ 13.19 hrs HW=82.46' (Free Discharge) **3=Exfiltration** (Exfiltration Controls 0.09 cfs)

Primary OutFlow Max=0.00 cfs @ 1.00 hrs HW=82.00' (Free Discharge) **1=Orifice/Grate** (Controls 0.00 cfs)

Secondary OutFlow Max=0.00 cfs @ 1.00 hrs HW=82.00' (Free Discharge) 2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond D1: Infiltration Basin 1

Inflow Area = 0.459 ac, 0.00% Impervious, Inflow Depth = 0.00" for WQV event Inflow 0.00 cfs @ 1.00 hrs, Volume= 0.000 af = 1.00 hrs, Volume= Outflow = 0.00 cfs @ 0.000 af, Atten= 0%, Lag= 0.0 min 1.00 hrs, Volume= Discarded = 0.00 cfs @ 0.000 af Primary = 0.00 cfs @ 1.00 hrs, Volume= 0.000 af Routed to Pond RB1 : Perf Pipe/RB 1.00 hrs, Volume= Secondary = 0.00 cfs @ 0.000 af Routed to Pond SP1 : Boat ramp

Routing by Stor-Ind method, Time Span= 1.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 78.50' @ 1.00 hrs Surf.Area= 350 sf Storage= 0 cf

Plug-Flow detention time= (not calculated: initial storage exceeds outflow) Center-of-Mass det. time= (not calculated: no inflow)

Volume	Invert	Avai	I.Storage	Storage	e Description	
#1	78.50'		1,038 cf	Custon	n Stage Data (P	rismatic)Listed below (Recalc)
Elevation (feet)	Surf. (:	Area sq-ft)	Inc (cubi	.Store c-feet)	Cum.Store (cubic-feet)	
78.50		350		0	0	
79.00		600		238	238	
80.00	1	,000,		800	1,038	

Prepared by Horsley Witten Inc HydroCAD® 10.20-2g s/n 01445 © 2022 HydroCAD Software Solutions LLC

Device	Routing	Invert	Outlet Devices
#1	Secondary	79.40'	12.0' long x 0.5' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00
			Coef. (English) 2.80 2.92 3.08 3.30 3.32
#2	Discarded	78.50'	1.020 in/hr Exfiltration over Surface area
#3	Primary	79.25'	24.0" Horiz. Orifice/Grate C= 0.600
	2		Limited to weir flow at low heads

Discarded OutFlow Max=0.00 cfs @ 1.00 hrs HW=78.50' (Free Discharge) **2=Exfiltration** (Passes 0.00 cfs of 0.01 cfs potential flow)

Primary OutFlow Max=0.00 cfs @ 1.00 hrs HW=78.50' (Free Discharge) →3=Orifice/Grate (Controls 0.00 cfs)

Secondary OutFlow Max=0.00 cfs @ 1.00 hrs HW=78.50' (Free Discharge) —1=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond F1: Forebay

[44] Hint: Outlet device #2 is below defined storage

Inflow Area	=	6.851 ac,	8.40% Impervious	s, Inflow D	epth =	0.08" f	or WC	V event
Inflow	=	0.35 cfs @	12.42 hrs, Volun	ie=	0.048 a	af		
Outflow	=	0.35 cfs @	12.43 hrs, Volun	ie=	0.046 a	af, Atten	= 0%,	Lag= 0.5 min
Primary	=	0.35 cfs @	12.43 hrs, Volun	ie=	0.046 a	af		•
Routed t	o Pond	100 : Diversi	ion structure					

Routing by Stor-Ind method, Time Span= 1.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 100.57' @ 12.43 hrs Surf.Area= 196 sf Storage= 82 cf

Plug-Flow detention time= 33.2 min calculated for 0.046 af (97% of inflow) Center-of-Mass det. time= 13.2 min (820.6 - 807.4)

Volume	Inv	vert Avail.St	torage S	Storage	Description		
#1	100.	00' 3,	460 cf (Custom	Stage Data (Pr	rismatic)Listed below (Recalc)	
Elevatio (fee	on et)	Surf.Area (sq-ft)	Inc.S (cubic-t	Store feet)	Cum.Store (cubic-feet)		
100.0	00	100		0	0		
100.5	50	180		70	70		
101.0	00	300		120	190		
102.0	00	720		510	700		
103.0	00	1,350	1	,035	1,735		
104.0	00	2,100	1	,725	3,460		
Device	Routing	Inver	t Outlet	Devices	S		
#1	Primary	100.50	24.0"	Horiz. (Drifice/Grate C	C= 0.600	
			Limite	d to wei	r flow at low hea	ads	
#2	Device	1 92.00	' 18.0"	18.0" Round Culvert			
			L= 54.	0' CMI	P, projecting, no	headwall, Ke= 0.900	
			Inlet /	Outlet li	nvert= 92.00' / 9	0.00' S= 0.0370 '/' Cc= 0.900	

n= 0.013 Concrete pipe, bends & connections, Flow Area= 1.77 sf

Primary OutFlow Max=0.35 cfs @ 12.43 hrs HW=100.57' (Free Discharge) 1=Orifice/Grate (Weir Controls 0.35 cfs @ 0.84 fps) 2=Culvert (Passes 0.35 cfs of 1.72 cfs potential flow)

Summary for Pond I1: Inlet Flume

Inflow Area	=	6.851 ac,	8.40% Impe	ervious,	Inflow E	Depth =	0.08"	for WG	V event	
Inflow	=	0.35 cfs @	12.42 hrs,	Volume	=	0.048	af			
Outflow	=	0.35 cfs @	12.42 hrs,	Volume	=	0.048	af, At	ten= 0%,	Lag= 0.1	min
Primary	=	0.35 cfs @	12.42 hrs,	Volume	=	0.048	af		0	
Routed t	o Pond	F1 : Forebay	/							

Routing by Stor-Ind method, Time Span= 1.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 103.09' @ 12.42 hrs Surf.Area= 16 sf Storage= 9 cf

Plug-Flow detention time= 4.3 min calculated for 0.048 af (100% of inflow) Center-of-Mass det. time= 2.0 min (807.4 - 805.5)

Volume	Inv	ert Avail.Sto	orage Stor	age Description	
#1	102.8	50'	30 cf Cus	tom Stage Data (P	rismatic)Listed below (Recalc)
Elevatio	on et)	Surf.Area (sq-ft)	Inc.Store (cubic-feet	e Cum.Store) (cubic-feet)	
102.5 103.0 104.0	50 00 00	15 15 30	(} 23) 0 3 8 3 30	
Device	Routing	Invert	Outlet De	vices	
#1	Primary	103.00'	5.0' long Head (fee Coef. (En	x 0.5' breadth Bro t) 0.20 0.40 0.60 glish) 2.80 2.92 3.	ad-Crested Rectangular Weir 0.80 1.00 .08 3.30 3.32

Primary OutFlow Max=0.35 cfs @ 12.42 hrs HW=103.09' (Free Discharge) **1=Broad-Crested Rectangular Weir** (Weir Controls 0.35 cfs @ 0.82 fps)

Summary for Pond RB1: Perf Pipe/RB

Inflow Area	=	7.309 ac,	7.87% Impervious,	Inflow Depth =	0.00" for	WQV event
Inflow	=	0.00 cfs @	1.00 hrs, Volume	= 0.000 a	af	
Outflow	=	0.00 cfs @	1.00 hrs, Volume	= 0.000 a	af, Atten= ()%, Lag= 0.0 min
Discarded	=	0.00 cfs @	1.00 hrs, Volume	= 0.000 a	af	·
Primary	=	0.00 cfs @	1.00 hrs, Volume	= 0.000 a	af	
Routed	to Pond	SP1 : Boat ra	amp			

Routing by Stor-Ind method, Time Span= 1.00-72.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 69.30' @ 1.00 hrs Surf.Area= 79 sf Storage= 0 cf

Plug-Flow detention time= (not calculated: initial storage exceeds outflow) Center-of-Mass det. time= (not calculated: no inflow)

Prepared by Horsley Witten Inc

HydroCAD® 10.20-2g s/n 01445 © 2022 HydroCAD Software Solutions LLC

Type III 24-hi	r WQV Ra	infall=1.21"
	Printed	10/30/2023
Solutions LLC		Page 12

Volume	Invert A	vail.Storage	Storage Description
#1	74.50'	1,759 cf	48.0" Round Pipe Storage Inside #5
			L= 140.0' S= 0.0057 '/'
#2	70.30'	226 cf	6.00'D x 8.00'H Recharge Basin Inside #3
		100 6	308 cf Overall - 6.0" Wall Thickness = 226 cf
#3	69.30	132 cf	10.00'D x 9.00'H RB Stone
			707 cf Overall - 308 cf Embedded = 399 cf x 33.0% Voids
#4	78.20'	16 cf	Custom Stage Data (Prismatic)Listed below (Recalc)
#5	73.50'	1,092 cf	6.00'W x 140.00'L x 6.00'H Pipe Stone
			5,040 cf Overall - 1,759 cf Embedded = 3,281 cf x 33.3% Voids
		3,226 cf	Total Available Storage
Flevation	Surf Are	a In	ic Store Cum Store
(feet)	-sq-	ft) (cubi	pic-feet) (cubic-feet)
78.20	4	20	0 0
79.00		20	16 16
Device Ro	outing	Invert Out	tlet Devices

#1	Discarded	69.30'	8.270 in/hr Exfiltration over Surface area Phase-In= 0.01'	
#2	Primary	78.30'	24.0" Horiz. Orifice/Grate C= 0.600	
			Limited to weir flow at low heads	

Discarded OutFlow Max=0.00 cfs @ 1.00 hrs HW=69.30' (Free Discharge) **1=Exfiltration** (Controls 0.00 cfs)

Primary OutFlow Max=0.00 cfs @ 1.00 hrs HW=69.30' (Free Discharge) ←2=Orifice/Grate (Controls 0.00 cfs)

Summary for Pond SP1: Boat ramp

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	a =	9.468 ac,	10.07% Impe	ervious,	Inflow Dept	h = 0.0	04" for WC	QV event
Inflow	=	0.35 cfs @	12.15 hrs,	Volume	= 0.	.031 af		
Primary	=	0.35 cfs @	12.15 hrs,	Volume	= 0.	.031 af,	Atten= 0%,	Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 1.00-72.00 hrs, dt= 0.05 hrs

Summary for Pond SP2: Beach

[40] Hint: Not Described (Outflow=Inflow)

Inflow A	Area =	C).166 ac,	0.00% Imp	ervious,	Inflow I	Depth =	0.0	0" for	WQ	V even	t
Inflow	=	0	.00 cfs @	1.00 hrs,	Volume	=	0.000	af				
Primary	y =	0	.00 cfs @	1.00 hrs,	Volume	;=	0.000	af,	Atten= 0	%,	Lag= 0	.0 min

Routing by Stor-Ind method, Time Span= 1.00-72.00 hrs, dt= 0.05 hrs

Event#	Event	Storm Type	Curve	Mode	Duration	B/B	Depth	AMC
	Name				(hours)		(inches)	
1	2 yr	Type III 24-hr		Default	24.00	1	3.65	2
2	10 yr	Type III 24-hr		Default	24.00	1	5.36	2
3	25 yr	Type III 24-hr		Default	24.00	1	6.62	2
4	100 yr	Type III 24-hr		Default	24.00	1	8.62	2

Rainfall Events Listing (selected events)

Prepared by Horsley Witten Inc HydroCAD® 10.20-2g s/n 01445 © 2022 HydroCAD Software Solutions LLC

Area Listing (all nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
0.437	39	>75% Grass cover, Good, HSG A (DA1C)
0.618	98	Paved parking, HSG A (DA1A, DA1C)
0.246	98	Paved parking, HSG B (DA1A)
0.342	40	Permeable pavers (DA1C)
0.166	40	Permeable pavers, HSG A (DA2)
0.062	98	Roofs, HSG A (DA1C)
0.013	98	Unconnected roofs, HSG A (DA1A)
0.099	98	Unconnected roofs, HSG B (DA1A)
0.028	98	Water Surface, HSG A (DA1A)
4.270	30	Woods, Good, HSG A (DA1A, DA1B, DA1C)
3.353	55	Woods, Good, HSG B (DA1A)
9.634	47	TOTAL AREA

Prepared by Horsley Witten Inc HydroCAD® 10.20-2g s/n 01445 © 2022 HydroCAD Software Solutions LLC

Printed 10/30/2023 Page 4

HSG-A	HSG-B	HSG-C	HSG-D	Other	Total	Ground	Subcatchment
 (acres)	(acres)	(acres)	(acres)	(acres)	(acres)	Cover	Numbers
0.437	0.000	0.000	0.000	0.000	0.437	>75% Grass cover, Good	DA1C
0.618	0.246	0.000	0.000	0.000	0.864	Paved parking	DA1A,
							DA1C
0.166	0.000	0.000	0.000	0.342	0.508	Permeable pavers	DA1C,
							DA2
0.062	0.000	0.000	0.000	0.000	0.062	Roofs	DA1C
0.013	0.099	0.000	0.000	0.000	0.113	Unconnected roofs	DA1A
0.028	0.000	0.000	0.000	0.000	0.028	Water Surface	DA1A
4.270	3.353	0.000	0.000	0.000	7.623	Woods, Good	DA1A,
							DA1B,
							DA1C
5.593	3.698	0.000	0.000	0.342	9.634	TOTAL AREA	

Ground Covers (all nodes)

22032 OAKCREST PR Prepared by Horsley Witten Inc HydroCAD® 10.20-2g s/n 01445 © 2022	HydroCAD Software Solut	Type III 24-hi	^r 2 yr Rainfall=3.65" Printed 10/30/2023 Page 5
Time span=	1.00-72.00 hrs, dt=0.05	hrs, 1421 points	nethod
Runoff by SC	S TR-20 method, UH=S	CS, Weighted-CN	
Reach routing by Stor-In	d+Trans method - Pon	d routing by Stor-Ind r	
Subcatchment DA1A: Summer Camp	Runoff Area=298,40	08 sf 10.04% Imperviou	us Runoff Depth=0.21"
	Flow Length=810' T	c=31.6 min CN=49 R	unoff=0.30 cfs 0.117 af
Subcatchment DA1B: Woods	Runoff Area=19,9	988 sf 0.00% Imperviou	us Runoff Depth=0.00"
Flow Length	=182' Slope=0.1600 '/'	Tc=9.5 min CN=30 R	unoff=0.00 cfs 0.000 af
SubcatchmentDA1C: Boat Ramp	Runoff Area=94,02	24 sf 17.50% Imperviou	us Runoff Depth=0.11"
Flow Length=	327' Slope=0.1000 '/' T	c=11.2 min CN=45 R	unoff=0.03 cfs 0.019 af
Subcatchment DA2: Parking lot east	Runoff Area=7,2	221 sf 0.00% Imperviou Tc=5.0 min CN=40 R	us Runoff Depth=0.03" unoff=0.00 cfs 0.000 af
Pond 100: Diversion structure) cfs_0.115 af_Secondary	Peak Elev=84.91' II	nflow=0.30 cfs 0.115 af
Primary=0.30		/=0.00 cfs 0.000 af Ou	tflow=0.30 cfs 0.115 af
Pond BIO1: Bioretention 1	Peak Elev=82	2.53' Storage=750 cf Iı	nflow=0.30 cfs 0.115 af
Discarded=0.09 cfs 0.094 af Primary=0.11	cfs 0.022 af Secondary	v=0.00 cfs 0.000 af Ou	tflow=0.21 cfs 0.115 af
Pond D1: Infiltration Basin 1	Peak Elev	=78.50' Storage=0 cf Iı	nflow=0.00 cfs 0.000 af
Discarded=0.00 cfs 0.000 af Primary=0.00	ofs 0.000 af Secondary	/=0.00 cfs 0.000 af Ou	tflow=0.00 cfs 0.000 af
Pond F1: Forebay	Peak Elev=10	00.56' Storage=81 cf II Ou	nflow=0.31 cfs 0.117 af tflow=0.30 cfs 0.115 af
Pond I1: Inlet Flume	Peak Elev=	103.08' Storage=9 cf II Ou	nflow=0.30 cfs 0.117 af tflow=0.31 cfs 0.117 af
Pond RB1: Perf Pipe/RB	Peak Elev=73	3.49' Storage=158 cf Iı	nflow=0.11 cfs 0.022 af
Discarded=0	0.14 cfs 0.022 af Primary	/=0.00 cfs 0.000 af Ou	tflow=0.14 cfs 0.022 af
Pond SP1: Boat ramp		lı Pri	nflow=0.03 cfs 0.019 af mary=0.03 cfs 0.019 af
Pond SP2: Beach		lı Pri	nflow=0.00 cfs 0.000 af mary=0.00 cfs 0.000 af
Total Runoff Area = 9.	634 ac Runoff Volum	e = 0.137 af Average	e Runoff Depth = 0.17"

88.94% Pervious = 8.568 ac 11.06% Impervious = 1.066 ac

Summary for Subcatchment DA1A: Summer Camp

Runoff = 0.30 cfs @ 12.81 hrs, Volume= 0.117 af, Depth= 0.21" Routed to Pond I1 : Inlet Flume

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 2 yr Rainfall=3.65"

Α	rea (sf)	CN	Description					
	10,717	98	Paved park	ing, HSG B	}			
	13,149	98	Paved park	ing, HSG A	N Contraction of the second seco			
	588	98	Unconnecte	ed roofs, HS	SG A			
	4,320	98	Unconnecte	ed roofs, HS	SG B			
1	46,058	55	Woods, Go	od, HSG B				
1	22,375	30	Woods, Go	od, HSG A				
	1,201	98	Water Surfa	ace, HSG A				
2	98,408	8.408 49 Weighted Average						
2	68,433	44	89.96% Pei	vious Area				
	29,975 98 10.04% Impervious Area							
	4,908		16.37% Unconnected					
Tc	Length	Slope	Velocity	Capacity	Description			
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
26.5	100	0.0100	0.06		Sheet Flow,			
					Woods: Light underbrush n= 0.400 P2= 3.65"			
3.5	150	0.0200	0.71		Shallow Concentrated Flow,			
					Woodland Kv= 5.0 fps			
1.6	560	0.0800	5.74		Shallow Concentrated Flow,			
					Paved Kv= 20.3 fps			
31.6	810	Total						

Summary for Subcatchment DA1B: Woods

[45] Hint: Runoff=Zero

Runoff = 0.00 cfs @ 1.00 hrs, Volume= 0.000 af, Depth= 0.00" Routed to Pond D1 : Infiltration Basin 1

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 2 yr Rainfall=3.65"

 Area (sf)	CN	Description
 19,988	30	Woods, Good, HSG A
 19,988	30	100.00% Pervious Area

HydroCA	D® 10.20-	2g s/n 01	445 © 202	2 HydroCAE) Software Solutions LLC	Page 7
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	-
8.8	100	0.1600	0.19		Sheet Flow.	
0.7	82	0.1600	2.00		Woods: Light underbrush n= 0.400 P2= 3.65" Shallow Concentrated Flow, Woodland Kv= 5.0 fps	
9.5	182	Total				
Dunoff	_	Su	ummary	for Subc	atchment DA1C: Boat Ramp	
Runom	= nd to Dom		S @ 13.8	i nrs, volu	$Ime = 0.019 \text{ af}, Deptn = 0.11^{\circ}$	
Route		u 3P I . D	oatramp			
Runoff b Type III 2 A	y SCS TF 24-hr 2 y .rea (sf)	R-20 meth r Rainfall [:] CN D	nod, UH=S =3.65" Pescription	CS, Weigh	ted-CN, Time Span= 1.00-72.00 hrs, dt= 0.05 hrs	
	43,640	30 V	Voods, Go	od, HSG A		
	2,698	98 R	loofs, HSG	iΑ		
	13,758	98 P	aved park	ing, HSG A	N Contraction of the second seco	
	19,021	39 >	75% Gras	s cover, Go	ood, HSG A	
*	14,907	40 P	ermeable	pavers		
	94,024	45 V	Veighted A	verage		
	77,568	34 8	2.50% Per	vious Area		
	16,456	98 1	7.50% Imp	ervious Are	ea	
Тс	Length	Slope	Velocity	Capacity	Description	
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
10.6	100	0.1000	0.16		Sheet Flow, Woods: Light underbrush n= 0.400 P2= 3.65"	
0.6	227	0.1000	6.42		Shallow Concentrated Flow, Paved Kv= 20.3 fps	

Type III 24-hr 2 yr Rainfall=3.65"

Printed 10/30/2023

11.2 327 Total

22032 OAKCREST PR

Prepared by Horsley Witten Inc

Summary for Subcatchment DA2: Parking lot east

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.00 cfs @ 17.05 hrs, Volume= 0.000 af, Depth= 0.03" Routed to Pond SP2 : Beach

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 2 yr Rainfall=3.65"

	Area (sf)	CN	Description
*	7,221	40	Permeable pavers, HSG A
	7,221	40	100.00% Pervious Area

Prepared by Horsley Witten Inc HydroCAD® 10.20-2g s/n 01445 © 2022 HydroCAD Software Solutions LLC

Tc	Length	Slope	Velocity	Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	-				
5.0					Direct Entry,				
	Oursenant for Daniel 400. Diversion atmosture								
	Summary for Pond 100: Diversion structure								
[57] Hint:	Peaked a	it 84.91'	(Flood ele	vation advi	sed)				
Inflow Ar Inflow	ea = =	6.851 a 0.30 cfs	ac, 10.04% @ 12.82	% Imperviou 2 hrs. Volu	us, Inflow Depth = 0.20" for 2 yr event me= 0.115 af				

Outflow=0.30 cfs @12.82 hrs, Volume=0.115 af, Atten= 0%, Lag= 0.0 minPrimary=0.30 cfs @12.82 hrs, Volume=0.115 afRouted to Pond BIO1 : Bioretention 10.115 af0.115 afSecondary =0.00 cfs @1.00 hrs, Volume=0.000 afRouted to Pond RB1 : Perf Pipe/RB0.000 af

Routing by Stor-Ind method, Time Span= 1.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 84.91' @ 12.82 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	84.50'	6.0" Round To Bio L= 10.0' CMP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 84.50' / 84.00' S= 0.0500 '/' Cc= 0.900 n= 0.013 Concrete pipe, bends & connections, Flow Area= 0.20 sf
#2	Device 3	82.00'	18.0" Round To overflow L= 60.0' CMP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 82.00' / 78.00' S= 0.0667 '/' Cc= 0.900 n= 0.013 Concrete pipe, bends & connections, Flow Area= 1.77 sf
#3	Secondary	85.00'	4.0' long x 0.5' breadth Weir in structure Head (feet) 0.20 0.40 0.60 0.80 1.00 Coef. (English) 2.80 2.92 3.08 3.30 3.32

Primary OutFlow Max=0.30 cfs @ 12.82 hrs HW=84.91' (Free Discharge)

Secondary OutFlow Max=0.00 cfs @ 1.00 hrs HW=82.00' (Free Discharge)

-3=Weir in structure (Controls 0.00 cfs)

2=To overflow (Controls 0.00 cfs)

Summary for Pond BIO1: Bioretention 1

Inflow Area	a =	6.85	51 ac,	10.0	4%	Impe	ervious,	Inflow	Depth	=	0.2	0" f	or	2 yr	event		
Inflow	=	0.30	cfs @	12	.82 ł	nrs,	Volume	=	0.1	15	af			•			
Outflow	=	0.21	cfs @	14	.03 ł	nrs,	Volume	=	0.1	15	af,	Atten	= 3	81%,	Lag=	72.8	min
Discarded	=	0.09	cfs @	14	.03 ł	nrs,	Volume	=	0.0	94	af				•		
Primary	=	0.11	cfs @	14	.03 ł	nrs,	Volume	=	0.0	22	af						
Routed	to Pond	RB1	: Perf	Pipe	/RB												
Secondary	=	0.00	cfs @	1	1 00.	nrs,	Volume	=	0.0	00	af						
Routed	to Pond	D1 :	Infiltra	tion E	Basiı	n 1											

Routing by Stor-Ind method, Time Span= 1.00-72.00 hrs, dt= 0.05 hrs

Prepared by Horsley Witten Inc HydroCAD® 10.20-2g s/n 01445 © 2022 HydroCAD Software Solutions LLC

Peak Elev= 82.53' @ 14.03 hrs Surf.Area= 1,637 sf Storage= 750 cf

Plug-Flow detention time= 89.9 min calculated for 0.115 af (100% of inflow) Center-of-Mass det. time= 89.9 min (1,100.1 - 1,010.2)

Volume	Inve	rt Avail.Sto	rage Storage	Description	
#1	82.00)' 2,82	25 cf Custom	n Stage Data (Pr	rismatic)Listed below (Recalc)
Elevatio	on S	Surf.Area	Inc.Store	Cum.Store	
(fee	t)	(sq-ft)	(cubic-feet)	(cubic-feet)	
82.0	0	1,200	0	0	
82.5	0	1,600	700	700	
83.0	0	2,200	950	1,650	
83.5	0	2,500	1,175	2,825	
Device	Routing	Invert	Outlet Device	S	
#1	Primary	82.50'	24.0" Horiz.	Orifice/Grate C	C= 0.600 ads
#2	Secondar	y 82.75'	8.0' long x 0 Head (feet) (Coef. (English	9.5' breadth Broa 0.20 0.40 0.60 h) 2.80 2.92 3.0	ad-Crested Rectangular Weir 0.80 1.00 08 3.30 3.32
#3	Discardeo	82.00'	2.410 in/hr E	xfiltration over	Surface area

Discarded OutFlow Max=0.09 cfs @ 14.03 hrs HW=82.53' (Free Discharge) **3=Exfiltration** (Exfiltration Controls 0.09 cfs)

Primary OutFlow Max=0.11 cfs @ 14.03 hrs HW=82.53' (Free Discharge)

Secondary OutFlow Max=0.00 cfs @ 1.00 hrs HW=82.00' (Free Discharge) 2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond D1: Infiltration Basin 1

0.459 ac, Inflow Area = 0.00% Impervious, Inflow Depth = 0.00" for 2 yr event 1.00 hrs, Volume= 0.000 af Inflow = 0.00 cfs @ 1.00 hrs, Volume= Outflow = 0.00 cfs @ 0.000 af, Atten= 0%, Lag= 0.0 min 1.00 hrs, Volume= Discarded = 0.00 cfs @ 0.000 af Primary = 0.00 cfs @ 1.00 hrs, Volume= 0.000 af Routed to Pond RB1 : Perf Pipe/RB Secondary = 0.00 cfs @ 1.00 hrs, Volume= 0.000 af Routed to Pond SP1 : Boat ramp

Routing by Stor-Ind method, Time Span= 1.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 78.50' @ 1.00 hrs Surf.Area= 350 sf Storage= 0 cf

Plug-Flow detention time= (not calculated: initial storage exceeds outflow) Center-of-Mass det. time= (not calculated: no inflow)

Type III 24-hr	2 yr Ra	infall=3.65"
	Printed	10/30/2023
.C		Page 10

Prepared by Horsley Witten	Inc
HydroCAD® 10.20-2g s/n 01445	© 2022 HydroCAD Software Solutions LL

Volume	Invert	Avail.Sto	rage Storage	Description	
#1	78.50'	1,03	38 cf Custom	Stage Data (Pi	rismatic)Listed below (Recalc)
Elevatio (fee	on Su et)	urf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
78.9 79.0 80.0	50 00 00	350 600 1,000	0 238 800	0 238 1,038	
Device	Routing	Invert	Outlet Devices	S	
#1	Secondary	79.40'	12.0' long x (Head (feet) 0 Coef. (English	0.5' breadth Br .20 0.40 0.60) 2.80 2.92 3.	oad-Crested Rectangular Weir 0.80 1.00 08 3.30 3.32
#2 #3	Discarded Primary	78.50' 79.25'	1.020 in/hr Ex 24.0" Horiz. C Limited to wei	(filtration over Drifice/Grate C r flow at low hea	Surface area C= 0.600 ads
Discard	led OutFlow	Max=0.00 cfs	s @ 1.00 hrs H	W=78.50' (Fre	e Discharge)

2=Exfiltration (Passes 0.00 cfs of 0.01 cfs potential flow)

Primary OutFlow Max=0.00 cfs @ 1.00 hrs HW=78.50' (Free Discharge) **3=Orifice/Grate** (Controls 0.00 cfs)

Secondary OutFlow Max=0.00 cfs @ 1.00 hrs HW=78.50' (Free Discharge) —1=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond F1: Forebay

[44] Hint: Outlet device #2 is below defined storage

Inflow Area	=	6.851 ac,	10.04% Imp	ervious, Inflov	w Depth = 0.2	21" for 2 yr	⁻ event
Inflow	=	0.31 cfs @	12.80 hrs,	Volume=	0.117 af	-	
Outflow	=	0.30 cfs @	12.82 hrs,	Volume=	0.115 af,	Atten= 4%,	Lag= 0.9 min
Primary	=	0.30 cfs @	12.82 hrs,	Volume=	0.115 af		•
Routed 1	to Pond	100 : Divers	sion structure	Э			

Routing by Stor-Ind method, Time Span= 1.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 100.56' @ 12.82 hrs Surf.Area= 194 sf Storage= 81 cf

Plug-Flow detention time= 10.7 min calculated for 0.115 af (99% of inflow) Center-of-Mass det. time= 4.4 min (1,010.2 - 1,005.8)

Volume	Invert	Avail.Storage	Storage Description
#1	100.00'	3,460 cf	Custom Stage Data (Prismatic)Listed below (Recalc)

Prepared by Horsle	ey Witten I	Inc				
HydroCAD® 10.20-2g	s/n 01445	© 2022 H	ydroCAD	Software	Solutions	LLC

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
100.00	100	0	0
100.50	180	70	70
101.00	300	120	190
102.00	720	510	700
103.00	1,350	1,035	1,735
104.00	2,100	1,725	3,460

Device	Routing	Invert	Outlet Devices
#1	Primary	100.50'	24.0" Horiz. Orifice/Grate C= 0.600
			Limited to weir flow at low heads
#2	Device 1	92.00'	18.0" Round Culvert
			L= 54.0' CMP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 92.00' / 90.00' S= 0.0370 '/' Cc= 0.900
			n= 0.013 Concrete pipe, bends & connections, Flow Area= 1.77 sf

Primary OutFlow Max=0.30 cfs @ 12.82 hrs HW=100.56' (Free Discharge) 1=Orifice/Grate (Weir Controls 0.30 cfs @ 0.80 fps) 2=Culvert (Passes 0.30 cfs of 1.63 cfs potential flow)

Summary for Pond I1: Inlet Flume

[88] Warning: Qout>Qin may require smaller dt or Finer Routing [85] Warning: Oscillations may require smaller dt or Finer Routing (severity=18)

Inflow Area	=	6.851 ac,	10.04% Impe	ervious, Inflow De	epth = 0.2	21" for 2 yr	⁻ event
Inflow	=	0.30 cfs @	12.81 hrs,	Volume=	0.117 af	-	
Outflow	=	0.31 cfs @	12.80 hrs,	Volume=	0.117 af,	Atten= 0%,	Lag= 0.0 min
Primary	=	0.31 cfs @	12.80 hrs,	Volume=	0.117 af		-
Routed 1	to Pond	F1 : Foreba	v				

Routing by Stor-Ind method, Time Span= 1.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 103.08' @ 12.80 hrs Surf.Area= 16 sf Storage= 9 cf

Plug-Flow detention time= 1.2 min calculated for 0.117 af (100% of inflow) Center-of-Mass det. time= 0.5 min (1,005.8 - 1,005.3)

Volume	Inv	ert Avail.St	torage Storag	e Description	
#1	102.	50'	30 cf Custo	m Stage Data (Pri	smatic)Listed below (Recalc)
Elevatio	on et)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
102.5	50	15	0	0	
103.0	00	15	8	8	
104.0	00	30	23	30	
Device	Routing	Inver	t Outlet Devic	ces	
#1	Primary	103.00	' 5.0' long x Head (feet) Coef. (Engli	0.5' breadth Broa 0.20 0.40 0.60 0 sh) 2.80 2.92 3.0	d-Crested Rectangular Weir 0.80 1.00 18 3.30 3.32

Primary OutFlow Max=0.31 cfs @ 12.80 hrs HW=103.08' (Free Discharge) —1=Broad-Crested Rectangular Weir (Weir Controls 0.31 cfs @ 0.79 fps)

Summary for Pond RB1: Perf Pipe/RB

[88] Warning: Qout>Qin may require smaller dt or Finer Routing

Inflow Area	=	7.309 ac,	9.41% Imper	rvious, Inflow	Depth = 0.0	4" for 2 yr	event
Inflow	=	0.11 cfs @	14.03 hrs, \	/olume=	0.022 af	-	
Outflow	=	0.14 cfs @	14.27 hrs, \	/olume=	0.022 af,	Atten= 0%,	Lag= 14.5 min
Discarded	=	0.14 cfs @	14.27 hrs, \	/olume=	0.022 af		-
Primary	=	0.00 cfs @	1.00 hrs, ∖	/olume=	0.000 af		
Routed	to Pond	SP1 : Boat r	amp				

Routing by Stor-Ind method, Time Span= 1.00-72.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 73.49' @ 14.25 hrs Surf.Area= 79 sf Storage= 158 cf

Plug-Flow detention time= 50.0 min calculated for 0.022 af (100% of inflow) Center-of-Mass det. time= 54.3 min (970.0 - 915.7)

Volume	Invert	Avail.Storag	e Storage	Description		
#1	74.50'	1,759 (of 48.0" F	Round Pipe Stor	age Inside #5	
			L= 140.	0' S= 0.0057 '/'		
#2	70.30'	226 0	of 6.00'D	k 8.00'H Recharge	ge Basin Insid	e #3
			308 cf C	Overall - 6.0" Wal	I Thickness = 2	226 cf
#3	69.30'	132 (of 10.00'D	x 9.00'H RB Sto	one	
			707 cf C	Overall - 308 cf E	mbedded = 39	9 cf x 33.0% Voids
#4	78.20'	16 0	of Custom	n Stage Data (Pr	rismatic)Listed	below (Recalc)
#5	73.50'	1,092 0	of 6.00'W	x 140.00'L x 6.0	0'H Pipe Ston	e
			5,040 ct	f Overall - 1,759	cf Embedded =	<u>= 3,281 cf x 33.3% Voids</u>
		3,226 0	of Total Av	ailable Storage		
				U		
Elevatio	on Sur	f.Area	nc.Store	Cum.Store		
(fee	et)	(sq-ft) (cเ	ubic-feet)	(cubic-feet)		
78.2	20	20	0	0		
79.0)0	20	16	16		
Device	Routing	Invert O	utlet Device	S		
#1	Discarded	69.30' 8 .	270 in/hr E	xfiltration over	Surface area	Phase-In= 0.01'
#2	Primary	78.30' 2 4	1.0" Horiz. (Orifice/Grate C	= 0.600	
		Li	mited to we	ir flow at low hea	lds	
D:		1 0 00 -f- G	44.07 h	1114/-70 401 / [

Discarded OutFlow Max=0.02 cfs @ 14.27 hrs HW=73.49' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.02 cfs)

Primary OutFlow Max=0.00 cfs @ 1.00 hrs HW=69.30' (Free Discharge) **2=Orifice/Grate** (Controls 0.00 cfs)

Summary for Pond SP1: Boat ramp

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	ea =	9.468 ac, <i>1</i>	11.26% Impervious	s, Inflow Depth =	0.02" for 2 yr	event
Inflow	=	0.03 cfs @	13.87 hrs, Volun	ne= 0.019 a	af	
Primary	=	0.03 cfs @	13.87 hrs, Volun	ne= 0.019 a	af, Atten= 0%, L	_ag= 0.0 min

Routing by Stor-Ind method, Time Span= 1.00-72.00 hrs, dt= 0.05 hrs

Summary for Pond SP2: Beach

[40] Hint: Not Described (Outflow=Inflow)

Inflow A	Area	=	0.166 ac,	0.00% Imperv	vious, Inflow [Depth = 0.03	3" for 2 yr	event
Inflow	:	=	0.00 cfs @	17.05 hrs, V	′olume=	0.000 af		
Primary	y :	=	0.00 cfs @	17.05 hrs, V	′olume=	0.000 af, A	Atten= 0%, I	Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 1.00-72.00 hrs, dt= 0.05 hrs

22032 OAKCREST PR	<i>Type III 24-hr 10 yr Rainfall=5.36"</i>
Prepared by Horsley Witten Inc	Printed 10/30/2023
HydroCAD® 10.20-2g s/n 01445 © 2022 Hydro	droCAD Software Solutions LLC Page 14
Time span=1.0	0-72.00 hrs, dt=0.05 hrs, 1421 points
Runoff by SCS ⊺	FR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+	Trans method - Pond routing by Stor-Ind method
Subcatchment DA1A: Summer Camp	Runoff Area=298,408 sf 10.04% Impervious Runoff Depth=0.79" Flow Length=810' Tc=31.6 min CN=49 Runoff=2.45 cfs 0.448 af
Subcatchment DA1B: Woods	Runoff Area=19,988 sf 0.00% Impervious Runoff Depth=0.02"
Flow Length=1	82' Slope=0.1600 '/' Tc=9.5 min CN=30 Runoff=0.00 cfs 0.001 af
Subcatchment DA1C: Boat Ramp	Runoff Area=94,024 sf 17.50% Impervious Runoff Depth=0.56"
Flow Length=32	7' Slope=0.1000 '/' Tc=11.2 min CN=45 Runoff=0.58 cfs 0.101 af
Subcatchment DA2: Parking lot east	Runoff Area=7,221 sf 0.00% Impervious Runoff Depth=0.32" Tc=5.0 min CN=40 Runoff=0.02 cfs 0.004 af
Pond 100: Diversion structure	Peak Elev=85.30' Inflow=2.45 cfs 0.447 af
Primary=0.55 cf	s 0.294 af Secondary=1.89 cfs 0.153 af Outflow=2.45 cfs 0.447 af
Pond BIO1: Bioretention 1	Peak Elev=82.58' Storage=824 cf Inflow=0.55 cfs 0.294 af
Discarded=0.09 cfs 0.110 af Primary=0.43 cf	s 0.183 af Secondary=0.00 cfs 0.000 af Outflow=0.52 cfs 0.294 af
Pond D1: Infiltration Basin 1	Peak Elev=78.50' Storage=1 cf Inflow=0.00 cfs 0.001 af
Discarded=0.00 cfs 0.001 af Primary=0.00 cf	s 0.000 af Secondary=0.00 cfs 0.000 af Outflow=0.00 cfs 0.001 af
Pond F1: Forebay	Peak Elev=100.74' Storage=120 cf Inflow=2.46 cfs 0.448 af Outflow=2.45 cfs 0.447 af
Pond I1: Inlet Flume	Peak Elev=103.31' Storage=13 cf Inflow=2.45 cfs 0.448 af Outflow=2.46 cfs 0.448 af
Pond RB1: Perf Pipe/RB	Peak Elev=78.48' Storage=2,859 cf Inflow=1.99 cfs 0.336 af
Discarded=0.18	3 cfs 0.199 af Primary=1.66 cfs 0.137 af Outflow=1.84 cfs 0.336 af
Pond SP1: Boat ramp	Inflow=1.90 cfs 0.238 af Primary=1.90 cfs 0.238 af
Pond SP2: Beach	Inflow=0.02 cfs 0.004 af Primary=0.02 cfs 0.004 af
Total Runoff Area = 9.634	ac Runoff Volume = 0.554 af Average Runoff Depth = 0.69" 88.94% Pervious = 8.568 ac 11.06% Impervious = 1.066 ac

Summary for Subcatchment DA1A: Summer Camp

Runoff = 2.45 cfs @ 12.58 hrs, Volume= 0.448 af, Depth= 0.79" Routed to Pond I1 : Inlet Flume

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 10 yr Rainfall=5.36"

A	rea (sf)	CN I	Description		
	10,717	98	[⊃] aved park	ing, HSG B	}
	13,149	98	⊃aved park	ing, HSG A	N Contraction of the second
	588	98	Jnconnecte	ed roofs, HS	SG A
	4,320	98	Jnconnecte	ed roofs, HS	SG B
1	46,058	55	Noods, Go	od, HSG B	
1	22,375	30	Noods, Go	od, HSG A	
	1,201	98	Nater Surfa	ace, HSG A	
2	98,408	49	Neighted A	verage	
2	68,433	44 8	39.96% Pei	vious Area	
	29,975	98	10.04% Imp	pervious Are	ea
	4,908		16.37% Un	connected	
Тс	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
26.5	100	0.0100	0.06		Sheet Flow,
					Woods: Light underbrush n= 0.400 P2= 3.65"
3.5	150	0.0200	0.71		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
1.6	560	0.0800	5.74		Shallow Concentrated Flow,
					Paved Kv= 20.3 fps
31.6	810	Total			

Summary for Subcatchment DA1B: Woods

Runoff = 0.00 cfs @ 21.79 hrs, Volume= 0.001 af, Routed to Pond D1 : Infiltration Basin 1

0.001 af, Depth= 0.02"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 10 yr Rainfall=5.36"

A	rea (sf)	CN I	Description		
	19,988	30 V	Noods, Go	od, HSG A	
	19,988	30 ⁻	100.00% Pe	ervious Are	a
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
8.8	100	0.1600	0.19		Sheet Flow,
0.7	82	0.1600	2.00		Woods: Light underbrush n= 0.400 P2= 3.65" Shallow Concentrated Flow, Woodland Kv= 5.0 fps
9.5	182	Total			

Summary for Subcatchment DA1C: Boat Ramp

Runoff = 0.58 cfs @ 12.34 hrs, Volume= Routed to Pond SP1 : Boat ramp 0.101 af, Depth= 0.56"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 10 yr Rainfall=5.36"

	Area (sf)	CN	Description		
	43,640	30	Woods, Go	od, HSG A	
	2,698	98	Roofs, HSC	θA	
	13,758	98	Paved park	ing, HSG A	N Contraction of the second
	19,021	39	>75% Gras	s cover, Go	bod, HSG A
*	14,907	40	Permeable	pavers	
	94,024	45	Weighted A	verage	
	77,568	34	82.50% Pe	rvious Area	
	16,456	98	17.50% Im	pervious Ar	ea
Т	c Length	Slope	e Velocity	Capacity	Description
(mir	n) (feet)	(ft/ft) (ft/sec)	(cfs)	
10.	6 100	0.1000	0.16		Sheet Flow,
					Woods: Light underbrush n= 0.400 P2= 3.65"
0.	6 227	0.1000	6.42		Shallow Concentrated Flow,
					Paved Kv= 20.3 fps
11	2 327	Total			

Summary for Subcatchment DA2: Parking lot east

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.02 cfs @ 12.37 hrs, Volume= 0.004 af, Depth= 0.32" Routed to Pond SP2 : Beach

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 10 yr Rainfall=5.36"

	Area (sf)	CN	Description				
*	7,221	40	Permeable pavers, HSG A				
	7,221	40	100.00% P	ervious Are	ea		
٦	c Length	Slope	Velocity	Capacity	Description		
(mi	n) (feet)	(ft/ft)	(ft/sec)	(cfs)			
5	.0				Direct Entry,		

Summary for Pond 100: Diversion structure

[57] Hint: Peaked at 85.30' (Flood elevation advised)

Type III 24-hr 10 yr Rainfall=5.36" Printed 10/30/2023 Page 17

Prepared by Horsley Witten Inc HydroCAD® 10.20-2g s/n 01445 © 2022 HydroCAD Software Solutions LLC

Inflow Area	=	6.851 ac, 1	10.04% Impe	ervious, Inflow De	epth = 0.1	78" for 10 y	r event
Inflow	=	2.45 cfs @	12.58 hrs,	Volume=	0.447 af		
Outflow	=	2.45 cfs @	12.58 hrs, 1	Volume=	0.447 af,	Atten= 0%, I	_ag= 0.0 min
Primary	=	0.55 cfs @	12.58 hrs, 1	Volume=	0.294 af		-
Routed t	Routed to Pond BIO1 : Bioretention 1						
Secondary	=	1.89 cfs @	12.58 hrs, 1	Volume=	0.153 af		
Routed t	to Pond	RB1 : Perf F	Pipe/RB				

Routing by Stor-Ind method, Time Span= 1.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 85.30' @ 12.58 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	84.50'	6.0" Round To Bio L= 10.0' CMP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 84.50' / 84.00' S= 0.0500 '/' Cc= 0.900 n= 0.013 Concrete pipe, bends & connections. Flow Area= 0.20 sf
#2	Device 3	82.00'	18.0" Round To overflow
			L= 60.0' CMP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 82.00' / 78.00' S= 0.0667 '/' Cc= 0.900
	- ·		n= 0.013 Concrete pipe, bends & connections, Flow Area= 1.77 sf
#3	Secondary	85.00'	4.0' long x 0.5' breadth Weir in structure
			Head (feet) 0.20 0.40 0.60 0.80 1.00
			Coet. (English) 2.80 2.92 3.08 3.30 3.32

Primary OutFlow Max=0.55 cfs @ 12.58 hrs HW=85.30' (Free Discharge) —1=To Bio (Inlet Controls 0.55 cfs @ 2.82 fps)

Secondary OutFlow Max=1.89 cfs @ 12.58 hrs HW=85.30' (Free Discharge) -3=Weir in structure (Weir Controls 1.89 cfs @ 1.57 fps) -2=To overflow (Passes 1.89 cfs of 3.68 cfs potential flow)

Summary for Pond BIO1: Bioretention 1

Inflow Area	=	6.851 ac, 1	0.04% Impe	ervious,	Inflow De	epth =	0.51"	for 10 y	yr even	nt
Inflow	=	0.55 cfs @	12.58 hrs,	Volume	=	0.294	af			
Outflow	=	0.52 cfs @	12.87 hrs,	Volume	=	0.294	af, Atte	en= 6%,	Lag= [^]	17.8 min
Discarded	=	0.09 cfs @	12.87 hrs,	Volume	=	0.110	af			
Primary	=	0.43 cfs @	12.87 hrs,	Volume	=	0.183	af			
Routed	to Pond	RB1 : Perf F	Pipe/RB							
Secondary	=	0.00 cfs @	1.00 hrs,	Volume	=	0.000	af			
Routed	to Pond	D1 : Infiltrati	on Basin 1							
Routing by Stor-Ind method, Time Span= 1.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 82.58' @ 12.87 hrs Surf.Area= 1,690 sf Storage= 824 cf										
Plug-Flow of Center-of-M	detentior lass det	n time= 47.7 . time= 47.8	min calculat min (1,060.	ted for 0. .6 - 1,012	.294 af (1 2.8)	00% of	inflow)			

Volume	Invert	Avail.Storage	Storage Description
#1	82.00'	2,825 cf	Custom Stage Data (Prismatic)Listed below (Recalc)

Prepared by Horsle	y Witten I	Inc			
HydroCAD® 10.20-2g	s/n 01445	© 2022 H	vdroCAD	Software	Solutions LL

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
82.00	1,200	0	0
82.50	1,600	700	700
83.00	2,200	950	1,650
83.50	2,500	1,175	2,825

Device	Routing	Invert	Outlet Devices
#1	Primary	82.50'	24.0" Horiz. Orifice/Grate C= 0.600
			Limited to weir flow at low heads
#2	Secondary	82.75'	8.0' long x 0.5' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00
			Coef. (English) 2.80 2.92 3.08 3.30 3.32
#3	Discarded	82.00'	2.410 in/hr Exfiltration over Surface area

Discarded OutFlow Max=0.09 cfs @ 12.87 hrs HW=82.58' (Free Discharge) **3=Exfiltration** (Exfiltration Controls 0.09 cfs)

Primary OutFlow Max=0.42 cfs @ 12.87 hrs HW=82.58' (Free Discharge) -1=Orifice/Grate (Weir Controls 0.42 cfs @ 0.90 fps)

Secondary OutFlow Max=0.00 cfs @ 1.00 hrs HW=82.00' (Free Discharge) 2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond D1: Infiltration Basin 1

Inflow Area	a =	0.45	9 ac,	0.00% I	mpe	ervious,	Inflow	Depth =	0.0	2" f	or 10	yr eve	ent
Inflow	=	0.00	cfs @	21.79 h	nrs,	Volume	=	0.001	af				
Outflow	=	0.00	cfs @	21.97 h	nrs,	Volume	=	0.001	af,	Atten	= 0%	Lag=	10.9 min
Discarded	=	0.00	cfs @	21.97 h	nrs,	Volume	=	0.001	af			•	
Primary	=	0.00	cfs @	1.00 h	nrs,	Volume	=	0.000	af				
Routed	to Pond	RB1 :	: Perf P	ipe/RB									
Secondary	=	0.00	cfs @	1.00 h	nrs,	Volume	=	0.000	af				
Routed	to Pond	SP1 :	Boat r	amp									

Routing by Stor-Ind method, Time Span= 1.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 78.50' @ 21.97 hrs Surf.Area= 351 sf Storage= 1 cf

Plug-Flow detention time= 10.5 min calculated for 0.001 af (100% of inflow) Center-of-Mass det. time= 10.5 min (1,234.6 - 1,224.1)

Volume	Invert	Avail	.Storage	Storage	Description	
#1	78.50'		1,038 cf	Custom	i Stage Data (Pr	ismatic)Listed below (Recalc)
Elevation (feet)	Surf. (.Area sq-ft)	Inc (cubi	.Store c-feet)	Cum.Store (cubic-feet)	
78.50		350		0	0	
79.00		600		238	238	
80.00	1	1,000		800	1,038	

 Type III 24-hr
 10 yr Rainfall=5.36"

 Printed
 10/30/2023

 _C
 Page 19

Prepared by Horsley Witten Inc HydroCAD® 10.20-2g s/n 01445 © 2022 HydroCAD Software Solutions LLC

Device	Routing	Invert	Outlet Devices
#1	Secondary	79.40'	12.0' long x 0.5' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 Coef, (English) 2.80 2.92 3.08 3.30 3.32
#2 #3	Discarded Primary	78.50' 79.25'	1.020 in/hr Exfiltration over Surface area 24.0" Horiz. Orifice/Grate C= 0.600 Limited to weir flow at low heads

Discarded OutFlow Max=0.01 cfs @ 21.97 hrs HW=78.50' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 0.01 cfs)

Primary OutFlow Max=0.00 cfs @ 1.00 hrs HW=78.50' (Free Discharge) **3=Orifice/Grate** (Controls 0.00 cfs)

Secondary OutFlow Max=0.00 cfs @ 1.00 hrs HW=78.50' (Free Discharge) —1=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond F1: Forebay

[44] Hint: Outlet device #2 is below defined storage

Inflow Area	=	6.851 ac, 1	0.04% Impe	ervious,	Inflow Depth	n = 0.	.78" for	10 yr	event
Inflow	=	2.46 cfs @	12.59 hrs,	Volume=	= 0.4	448 af		-	
Outflow	=	2.45 cfs @	12.58 hrs,	Volume=	= 0.4	447 af	, Atten=	1%, La	ag= 0.0 min
Primary	=	2.45 cfs @	12.58 hrs,	Volume=	= 0.4	447 af			-
Routed	to Pond	100 : Diversi	on structure	9					

Routing by Stor-Ind method, Time Span= 1.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 100.74' @ 12.58 hrs Surf.Area= 238 sf Storage= 120 cf

Plug-Flow detention time= 3.2 min calculated for 0.447 af (100% of inflow) Center-of-Mass det. time= 1.3 min (936.3 - 935.1)

Volume	Inv	ert Avail.St	orage	Storage	Description	
#1	100.0	00' 3,4	460 cf	Custom	Stage Data (Pr	rismatic)Listed below (Recalc)
Elevatio	on	Surf.Area	Inc.	Store	Cum.Store	
(fee	et)	(sq-ft)	(cubic	-feet)	(cubic-feet)	
100.0	00	100		0	0	
100.5	50	180		70	70	
101.0	00	300		120	190	
102.0	00	720		510	700	
103.0	00	1,350		1,035	1,735	
104.0	00	2,100		1,725	3,460	
Device	Routing	Invert	Outle	t Devices	6	
#1	Primary	100.50'	24.0 " Limite	' Horiz. C ed to wei	Drifice/Grate C r flow at low hea	C= 0.600 ads
#2	Device 1	92.00'	18.0'' L= 54 Inlet <i>i</i> n= 0.	' Round 4.0' CMI / Outlet In 013 Cor	Culvert P, projecting, no nvert= 92.00' / 9 ncrete pipe, beno	9 headwall, Ke= 0.900 0.00' S= 0.0370 '/' Cc= 0.900 ds & connections, Flow Area= 1.77 sf

Primary OutFlow Max=2.43 cfs @ 12.58 hrs HW=100.74' (Free Discharge) 1=Orifice/Grate (Weir Controls 2.43 cfs @ 1.61 fps) 2=Culvert (Passes 2.43 cfs of 3.30 cfs potential flow)

Summary for Pond I1: Inlet Flume

[88] Warning: Qout>Qin may require smaller dt or Finer Routing

 Inflow Area =
 6.851 ac, 10.04% Impervious, Inflow Depth =
 0.79" for 10 yr event

 Inflow =
 2.45 cfs @
 12.58 hrs, Volume=
 0.448 af

 Outflow =
 2.46 cfs @
 12.59 hrs, Volume=
 0.448 af, Atten= 0%, Lag= 0.7 min

 Primary =
 2.46 cfs @
 12.59 hrs, Volume=
 0.448 af

 Routed to Pond F1 : Forebay
 0.448 af

Routing by Stor-Ind method, Time Span= 1.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 103.31' @ 12.59 hrs Surf.Area= 20 sf Storage= 13 cf

Plug-Flow detention time= 0.3 min calculated for 0.448 af (100% of inflow) Center-of-Mass det. time= 0.1 min (935.1 - 934.9)

Volume	Inv	ert Avail.Sto	orage Sto	rage Des	scription	
#1	102.8	50'	30 cf Cu	stom Sta	ige Data (Pr	ismatic)Listed below (Recalc)
Elevatio	on et)	Surf.Area (sq-ft)	Inc.Sto (cubic-fee	re et) (Cum.Store (cubic-feet)	
102.5 103.0	50 00	15 15		0 8	0	
104.0	00	30	2	23	30	
Device	Routing	Invert	Outlet De	evices		
#1	Primary	103.00'	5.0' long Head (fe Coef. (Ei	x 0.5' b et) 0.20 nglish) 2	readth Broa 0.40 0.60 (.80 2.92 3.(ad-Crested Rectangular Weir 0.80 1.00 08 3.30 3.32

Primary OutFlow Max=2.45 cfs @ 12.59 hrs HW=103.31' (Free Discharge) **1=Broad-Crested Rectangular Weir** (Weir Controls 2.45 cfs @ 1.59 fps)

Summary for Pond RB1: Perf Pipe/RB

Inflow Area	ı =	7.309 ac,	9.41% Impervious,	Inflow Depth =	0.55" for	10 yr event
Inflow	=	1.99 cfs @	12.73 hrs, Volume=	= 0.336	af	-
Outflow	=	1.84 cfs @	12.87 hrs, Volume=	= 0.336 ;	af, Atten=	8%, Lag= 8.5 min
Discarded	=	0.18 cfs @	12.80 hrs, Volume=	= 0.199 ;	af	-
Primary	=	1.66 cfs @	12.87 hrs, Volume=	= 0.137 ;	af	
Routed	to Pond	SP1 : Boat r	amp			

Routing by Stor-Ind method, Time Span= 1.00-72.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 78.48' @ 12.85 hrs Surf.Area= 939 sf Storage= 2,859 cf

Plug-Flow detention time= 119.6 min calculated for 0.336 af (100% of inflow)

Prepared by Horsley Witten Inc HydroCAD® 10.20-2g s/n 01445 © 2022 HydroCAD Software Solutions LLC

Volume Invert Avail.Storage Storage Description 48.0" Round Pipe Storage Inside #5 #1 74.50' 1.759 cf L= 140.0' S= 0.0057 '/' #2 70.30' 226 cf 6.00'D x 8.00'H Recharge Basin Inside #3 308 cf Overall - 6.0" Wall Thickness = 226 cf #3 69.30' 132 cf 10.00'D x 9.00'H RB Stone 707 cf Overall - 308 cf Embedded = 399 cf x 33.0% Voids #4 78.20' 16 cf Custom Stage Data (Prismatic)Listed below (Recalc) 73.50' 6.00'W x 140.00'L x 6.00'H Pipe Stone #5 1.092 cf 5,040 cf Overall - 1,759 cf Embedded = 3,281 cf x 33.3% Voids 3,226 cf Total Available Storage Surf.Area Cum.Store Elevation Inc.Store (feet) (sq-ft) (cubic-feet) (cubic-feet) 78.20 20 0 0 79.00 20 16 16 Device Routing Invert **Outlet Devices** #1 Discarded 69.30' 8.270 in/hr Exfiltration over Surface area Phase-In= 0.01' #2 Primary 78.30' 24.0" Horiz. Orifice/Grate C= 0.600 Limited to weir flow at low heads

Center-of-Mass det. time= 119.8 min (1,021.4 - 901.6)

Primary OutFlow Max=1.56 cfs @ 12.87 hrs HW=78.48' (Free Discharge)

Discarded OutFlow Max=0.18 cfs @ 12.80 hrs HW=78.42' (Free Discharge)

-2=Orifice/Grate (Weir Controls 1.56 cfs @ 1.38 fps)

-1=Exfiltration (Exfiltration Controls 0.18 cfs)

Summary for Pond SP1: Boat ramp

[40] Hint: Not Described (Outflow=Inflow)

Inflow A	Area =	9.468 ac, 11.26% Impervious, Inflow	Depth = 0.30" for 10 yr event
Inflow	=	1.90 cfs @ 12.87 hrs, Volume=	0.238 af
Primar	y =	1.90 cfs @ 12.87 hrs, Volume=	0.238 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 1.00-72.00 hrs, dt= 0.05 hrs

Summary for Pond SP2: Beach

[40] Hint: Not Described (Outflow=Inflow)

Inflow A	rea =	0.166 ac,	0.00% Impervious,	Inflow Depth = 0.3	32" for 10 yr event
Inflow	=	0.02 cfs @	12.37 hrs, Volume	= 0.004 af	-
Primary	=	0.02 cfs @	12.37 hrs, Volume	= 0.004 af,	Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 1.00-72.00 hrs, dt= 0.05 hrs

22032 OAKCREST PR	Type III 24-hr 25 yr Rainfall=6.62"
Prepared by Horsley Witten Inc	Printed 10/30/2023
<u>HydroCAD® 10.20-2g s/n 01445 © 2022 Hy</u>	vdroCAD Software Solutions LLC Page 22
Time span=1.	00-72.00 hrs, dt=0.05 hrs, 1421 points
Runoff by SCS	TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind-	FTrans method - Pond routing by Stor-Ind method
Subcatchment DA1A: Summer Camp	Runoff Area=298,408 sf 10.04% Impervious Runoff Depth=1.38" Flow Length=810' Tc=31.6 min CN=49 Runoff=5.07 cfs 0.787 af
Subcatchment DA1B: Woods	Runoff Area=19,988 sf 0.00% Impervious Runoff Depth=0.15"
Flow Length=	182' Slope=0.1600 '/' Tc=9.5 min CN=30 Runoff=0.01 cfs 0.006 af
Subcatchment DA1C: Boat Ramp	Runoff Area=94,024 sf 17.50% Impervious Runoff Depth=1.06"
Flow Length=3	27' Slope=0.1000 '/' Tc=11.2 min CN=45 Runoff=1.57 cfs 0.191 af
SubcatchmentDA2: Parking lot east	Runoff Area=7,221 sf 0.00% Impervious Runoff Depth=0.70" Tc=5.0 min CN=40 Runoff=0.06 cfs 0.010 af
Pond 100: Diversion structure	Peak Elev=85.51' Inflow=5.06 cfs 0.785 af
Primary=0.65 c	fs 0.381 af Secondary=4.41 cfs 0.404 af Outflow=5.06 cfs 0.785 af
Pond BIO1: Bioretention 1	Peak Elev=82.59' Storage=846 cf Inflow=0.65 cfs 0.381 af
Discarded=0.10 cfs 0.113 af Primary=0.54 c	fs 0.268 af Secondary=0.00 cfs 0.000 af Outflow=0.64 cfs 0.381 af
Pond D1: Infiltration Basin 1	Peak Elev=78.52' Storage=8 cf Inflow=0.01 cfs 0.006 af
Discarded=0.01 cfs 0.006 af Primary=0.00 c	fs 0.000 af Secondary=0.00 cfs 0.000 af Outflow=0.01 cfs 0.006 af
Pond F1: Forebay	Peak Elev=101.07' Storage=211 cf Inflow=5.07 cfs 0.787 af Outflow=5.06 cfs 0.785 af
Pond I1: Inlet Flume	Peak Elev=103.49' Storage=17 cf Inflow=5.07 cfs 0.787 af Outflow=5.07 cfs 0.787 af
Pond RB1: Perf Pipe/RB	Peak Elev=78.67' Storage=2,950 cf Inflow=4.85 cfs 0.672 af
Discarded=0.1	8 cfs 0.238 af Primary=4.66 cfs 0.430 af Outflow=4.83 cfs 0.668 af
Pond SP1: Boat ramp	Inflow=5.47 cfs 0.621 af Primary=5.47 cfs 0.621 af
Pond SP2: Beach	Inflow=0.06 cfs 0.010 af Primary=0.06 cfs 0.010 af
Total Runoff Area = 9.63	4 ac Runoff Volume = 0.993 af Average Runoff Depth = 1.24" 88.94% Pervious = 8.568 ac 11.06% Impervious = 1.066 ac

Summary for Subcatchment DA1A: Summer Camp

Runoff = 5.07 cfs @ 12.53 hrs, Volume= 0.787 af, Depth= 1.38" Routed to Pond I1 : Inlet Flume

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 25 yr Rainfall=6.62"

A	rea (sf)	CN	Description					
	10,717	98	Paved park	ing, HSG B				
	13,149	98	Paved park	ing, HSG A	l l l l l l l l l l l l l l l l l l l			
	588	98	Unconnecte	ed roofs, HS	SG A			
	4,320	98	Unconnecte	ed roofs, HS	SG B			
1	46,058	55	Woods, Go	oods, Good, HSG B				
1	22,375	30	Woods, Go	od, HSG A				
	1,201	98	Water Surfa	ace, HSG A				
2	98,408	49	Weighted A	verage				
2	68,433 44 89.96% Pervious Area							
	29,975	98 10.04% Impervious Area						
	4,908		16.37% Un	connected				
Тс	Length	Slope	Velocity	Capacity	Description			
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
26.5	100	0.0100	0.06		Sheet Flow,			
					Woods: Light underbrush n= 0.400 P2= 3.65"			
3.5	150	0.0200	0.71		Shallow Concentrated Flow,			
					Woodland Kv= 5.0 fps			
1.6	560	0.0800	5.74		Shallow Concentrated Flow,			
					Paved Kv= 20.3 fps			
31.6	810	Total						

Summary for Subcatchment DA1B: Woods

Runoff = 0.01 cfs @ 14.85 hrs, Volume= 0.006 Routed to Pond D1 : Infiltration Basin 1

0.006 af, Depth= 0.15"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 25 yr Rainfall=6.62"

A	rea (sf)	CN E	Description						
	19,988	30 V	0 Woods, Good, HSG A						
	19,988	30 1	30 100.00% Pervious Area						
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
8.8	100	0.1600	0.19	······································	Sheet Flow,				
0.7	82	0.1600	2.00		Woods: Light underbrush n= 0.400 P2= 3.65" Shallow Concentrated Flow, Woodland Kv= 5.0 fps				
9.5	182	Total							

Summary for Subcatchment DA1C: Boat Ramp

Runoff = 1.57 cfs @ 12.21 hrs, Volume= 0.191 af, Depth= 1.06" Routed to Pond SP1 : Boat ramp

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 25 yr Rainfall=6.62"

	Area (sf)	CN	Description		
	43,640	30	Woods, Go	od, HSG A	
	2,698	98	Roofs, HSC	θA	
	13,758	98	Paved park	ing, HSG A	N Contraction of the second
	19,021	39	>75% Gras	s cover, Go	bod, HSG A
*	14,907	40	Permeable	pavers	
	94,024	45	Weighted A	verage	
	77,568	34	82.50% Pe	rvious Area	
	16,456	98	17.50% Im	pervious Ar	ea
Т	c Length	Slope	e Velocity	Capacity	Description
(mir	n) (feet)	(ft/ft) (ft/sec)	(cfs)	
10.	6 100	0.1000	0.16		Sheet Flow,
					Woods: Light underbrush n= 0.400 P2= 3.65"
0.	6 227	0.1000	6.42		Shallow Concentrated Flow,
					Paved Kv= 20.3 fps
11	2 327	Total			

Summary for Subcatchment DA2: Parking lot east

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.06 cfs @ 12.15 hrs, Volume= 0.010 af, Depth= 0.70" Routed to Pond SP2 : Beach

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 25 yr Rainfall=6.62"

	Area (sf)	CN	Description						
*	7,221	40	Permeable pavers, HSG A						
	7,221	40	100.00% P	ervious Are	ea				
٦	c Length	Slope	Velocity	Capacity	Description				
(mi	n) (feet)	(ft/ft)	(ft/sec)	(cfs)					
5	.0				Direct Entry,				

Summary for Pond 100: Diversion structure

[57] Hint: Peaked at 85.51' (Flood elevation advised)

Prepared by Horsley Witten Inc

HydroCAD® 10.20-2g s/n 01445 © 2022 HydroCAD Software Solutions LLC

Inflow Area	=	6.851 ac, <i>1</i>	10.04% Impervious,	Inflow Depth =	1.37" for 2	5 yr event
Inflow	=	5.06 cfs @	12.55 hrs, Volume	= 0.785	af	
Outflow	=	5.06 cfs @	12.55 hrs, Volume	= 0.785	af, Atten= 0%	6, Lag= 0.0 min
Primary	=	0.65 cfs @	12.55 hrs, Volume	= 0.381	af	-
Routed	to Pond	BIO1 : Biore	etention 1			
Secondary	=	4.41 cfs @	12.55 hrs, Volume	= 0.404	af	
Routed	to Pond	RB1 : Perf F	Pipe/RB			

Routing by Stor-Ind method, Time Span= 1.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 85.51' @ 12.55 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	84.50'	6.0" Round To Bio L= 10.0' CMP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= $84.50'$ / $84.00'$ S= 0.0500 '/' Cc= 0.900 n= 0.013 Concrete nine, bends & connections. Flow Area= 0.20 sf
#2	Device 3	82.00'	18.0" Round To overflow
			L= 60.0' CMP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 82.00' / 78.00' S= 0.0667 '/' Cc= 0.900
			n= 0.013 Concrete pipe, bends & connections, Flow Area= 1.77 sf
#3	Secondary	85.00'	4.0' long x 0.5' breadth Weir in structure
			Read (reet) 0.20 0.40 0.60 0.80 1.00 Coef. (English) 2.80 2.92 3.08 3.30 3.32

Primary OutFlow Max=0.65 cfs @ 12.55 hrs HW=85.51' (Free Discharge) **1=To Bio** (Inlet Controls 0.65 cfs @ 3.32 fps)

Secondary OutFlow Max=4.40 cfs @ 12.55 hrs HW=85.51' (Free Discharge) **3=Weir in structure** (Weir Controls 4.40 cfs @ 2.15 fps) **2=To overflow** (Passes 4.40 cfs of 4.80 cfs potential flow)

Summary for Pond BIO1: Bioretention 1

Inflow Area =	6.851 ac,	10.04% Impe	rvious, In	flow Dep	pth =	0.67"	for 25	yr event
Inflow =	0.65 cfs @	12.55 hrs, \	Volume=		0.381	af		
Outflow =	0.64 cfs @	12.70 hrs, \	Volume=		0.381	af, Atte	en= 3%,	Lag= 9.4 mir
Discarded =	0.10 cfs @	12.70 hrs, \	Volume=		0.113	af		
Primary =	0.54 cfs @	12.70 hrs, \	Volume=		0.268	af		
Routed to	Pond RB1 : Perf I	Pipe/RB						
Secondary =	0.00 cfs @	1.00 hrs, \	Volume=		0.000	af		
Routed to	Pond D1 : Infiltrat	ion Basin 1						
Routing by Ste	or-Ind method, Ti	me Span= 1.()0-72.00 h	nrs, dt= (0.05 hi	rs		
Peak Elev= 82	2.59' @ 12.70 hrs	Surf.Area=	1,706 sf	Storage	e= 846	i cf		
Plug-Flow det	ention time= 38.4	min calculate	ed for 0.38	30 af (10	0% of	inflow)		
Center-of-Mas	Center-of-Mass det. time= 38.5 min(1,072.3 - 1,033.8)							

Volume	Invert	Avail.Storage	Storage Description
#1	82.00'	2,825 cf	Custom Stage Data (Prismatic)Listed below (Recalc)

Type III 24-hr 25 yr Rainfall=6.62" Printed 10/30/2023 Page 25

Prepared by Horsle	y Witten I	Inc			
HydroCAD® 10.20-2g	s/n 01445	© 2022 H	vdroCAD	Software	Solutions LL

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
82.00	1,200	0	0
82.50	1,600	700	700
83.00	2,200	950	1,650
83.50	2,500	1,175	2,825

Device	Routing	Invert	Outlet Devices
#1	Primary	82.50'	24.0" Horiz. Orifice/Grate C= 0.600
	-		Limited to weir flow at low heads
#2	Secondary	82.75'	8.0' long x 0.5' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00
			Coef. (English) 2.80 2.92 3.08 3.30 3.32
#3	Discarded	82.00'	2.410 in/hr Exfiltration over Surface area

Discarded OutFlow Max=0.10 cfs @ 12.70 hrs HW=82.59' (Free Discharge) **3=Exfiltration** (Exfiltration Controls 0.10 cfs)

Primary OutFlow Max=0.54 cfs @ 12.70 hrs HW=82.59' (Free Discharge) -1=Orifice/Grate (Weir Controls 0.54 cfs @ 0.97 fps)

Secondary OutFlow Max=0.00 cfs @ 1.00 hrs HW=82.00' (Free Discharge) 2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond D1: Infiltration Basin 1

Inflow Area	a =	0.45	9 ac,	0.00%	Impe	ervious,	Inflow	Depth =	0.1	5" for	25	yr event	
Inflow	=	0.01	cfs @	14.85 ł	nrs,	Volume	=	0.006	af				
Outflow	=	0.01	cfs @	15.67 ł	nrs,	Volume	=	0.006	af, .	Atten=	8%,	Lag= 49	.2 min
Discarded	=	0.01	cfs @	15.67 ł	nrs,	Volume	=	0.006	af			•	
Primary	=	0.00	cfs @	1.00 ł	nrs,	Volume	=	0.000	af				
Routed	to Pond	RB1	: Perf P	ipe/RB									
Secondary	=	0.00	cfs @	1.00 ł	nrs,	Volume	=	0.000	af				
Routed	to Pond	SP1:	: Boat ra	amp									

Routing by Stor-Ind method, Time Span= 1.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 78.52' @ 15.67 hrs Surf.Area= 362 sf Storage= 8 cf

Plug-Flow detention time= 11.6 min calculated for 0.006 af (100% of inflow) Center-of-Mass det. time= 11.5 min (1,075.5 - 1,063.9)

Volume	Invert	Avail	.Storage	Storage	Description	
#1	78.50'		1,038 cf	Custom	i Stage Data (Pr	ismatic)Listed below (Recalc)
Elevation (feet)	Surf. (.Area sq-ft)	Inc (cubi	.Store c-feet)	Cum.Store (cubic-feet)	
78.50		350		0	0	
79.00		600		238	238	
80.00	1	1,000		800	1,038	

 Type III 24-hr
 25 yr Rainfall=6.62"

 Printed
 10/30/2023

 _C
 Page 27

Prepared by Horsley Witten Inc HydroCAD® 10.20-2g s/n 01445 © 2022 HydroCAD Software Solutions LLC

Device	Routing	Invert	Outlet Devices
#1	Secondary	79.40'	12.0' long x 0.5' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 Coef, (English) 2.80 2.92 3.08 3.30 3.32
#2 #3	Discarded Primary	78.50' 79.25'	 1.020 in/hr Exfiltration over Surface area 24.0" Horiz. Orifice/Grate C= 0.600 Limited to weir flow at low heads

Discarded OutFlow Max=0.01 cfs @ 15.67 hrs HW=78.52' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 0.01 cfs)

Primary OutFlow Max=0.00 cfs @ 1.00 hrs HW=78.50' (Free Discharge) **3=Orifice/Grate** (Controls 0.00 cfs)

Secondary OutFlow Max=0.00 cfs @ 1.00 hrs HW=78.50' (Free Discharge) —1=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond F1: Forebay

[44] Hint: Outlet device #2 is below defined storage

Inflow Area	=	6.851 ac, 1	0.04% Impe	ervious, Inflow	Depth = 1.3	38" for 25 y	/r event
Inflow	=	5.07 cfs @	12.53 hrs,	Volume=	0.787 af	-	
Outflow	=	5.06 cfs @	12.55 hrs,	Volume=	0.785 af,	Atten= 0%,	Lag= 1.2 min
Primary	=	5.06 cfs @	12.55 hrs,	Volume=	0.785 af		-
Routed	to Pond	100 : Divers	ion structure	;			

Routing by Stor-Ind method, Time Span= 1.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 101.07' @ 12.55 hrs Surf.Area= 328 sf Storage= 211 cf

Plug-Flow detention time= 2.0 min calculated for 0.784 af (100% of inflow) Center-of-Mass det. time= 0.9 min (913.6 - 912.8)

Volume	Inv	ert Avail.St	orage	Storage	Description			
#1	100.0	00' 3,4	460 cf	Custom	Stage Data (Pr	rismatic)Listed below (Recalc)		
Elevatio	on	Surf.Area	Inc.	Store	Cum.Store			
(fee	et)	(sq-ft)	(cubic	-feet)	(cubic-feet)			
100.0	00	100		0	0			
100.5	50	180		70	70			
101.0	00	300		120	190			
102.0	00	720		510	700			
103.0	00	1,350		1,035	1,735			
104.0	00	2,100		1,725	3,460			
Device	Routing	Invert	Outle	t Devices	S			
#1	Primary	100.50'	24.0 " Limite	24.0" Horiz. Orifice/Grate C= 0.600				
#2	Device 1	92.00'	18.0" L= 54 Inlet <i>i</i> n= 0.	18.0" Round Culvert L= 54.0' CMP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 92.00' / 90.00' S= 0.0370 '/' Cc= 0.900 n= 0.013 Concrete pipe, bends & connections, Flow Area= 1.77 sf				

Primary OutFlow Max=5.06 cfs @ 12.55 hrs HW=101.07' (Free Discharge) 1=Orifice/Grate (Passes 5.06 cfs of 8.76 cfs potential flow) 2=Culvert (Inlet Controls 5.06 cfs @ 2.86 fps)

Summary for Pond I1: Inlet Flume

Inflow Area	=	6.851 ac,	10.04% Impe	ervious, Inflow	Depth = 1.	38" for 25	yr event
Inflow	=	5.07 cfs @	12.53 hrs,	Volume=	0.787 af		-
Outflow	=	5.07 cfs @	12.53 hrs,	Volume=	0.787 af,	Atten= 0%,	Lag= 0.0 min
Primary	=	5.07 cfs @	12.53 hrs,	Volume=	0.787 af		•
Routed t	o Pond	F1 : Foreba	у				

Routing by Stor-Ind method, Time Span= 1.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 103.49' @ 12.53 hrs Surf.Area= 22 sf Storage= 17 cf

Plug-Flow detention time= 0.2 min calculated for 0.787 af (100% of inflow) Center-of-Mass det. time= 0.1 min (912.8 - 912.7)

Volume	Inv	ert Avail.Sto	orage Storag	ge Description	
#1	102.	50'	30 cf Custo	om Stage Data (P	rismatic)Listed below (Recalc)
Elevatio (fee 102.5 103.0	on et) 50 00	Surf.Area (sq-ft) 15 15	Inc.Store (cubic-feet) 0 8	Cum.Store (cubic-feet) 0 8	
104.0	00	30	23	30	
Device	Routing	Invert	Outlet Devi	ces	
#1	Primary	103.00'	5.0' long x Head (feet) Coef. (Engli	0.5' breadth Bro 0.20 0.40 0.60 (sh) 2.80 2.92 3.	ad-Crested Rectangular Weir 0.80 1.00 08 3.30 3.32

Primary OutFlow Max=5.05 cfs @ 12.53 hrs HW=103.49' (Free Discharge) —1=Broad-Crested Rectangular Weir (Weir Controls 5.05 cfs @ 2.08 fps)

Summary for Pond RB1: Perf Pipe/RB

Inflow Area	ı =	7.309 ac,	9.41% Impervious,	Inflow Depth =	1.10" for	25 yr event	
Inflow	=	4.85 cfs @	12.58 hrs, Volume	= 0.672 a	af		
Outflow	=	4.83 cfs @	12.59 hrs, Volume	= 0.668 a	af, Atten=	0%, Lag= 0.5 min	
Discarded	=	0.18 cfs @	12.45 hrs, Volume	= 0.238 a	af	-	
Primary	=	4.66 cfs @	12.59 hrs, Volume	= 0.430 a	af		
Routed to Pond SP1 : Boat ramp							

Routing by Stor-Ind method, Time Span= 1.00-72.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 78.67' @ 12.59 hrs Surf.Area= 939 sf Storage= 2,950 cf

Plug-Flow detention time= 83.5 min calculated for 0.668 af (99% of inflow) Center-of-Mass det. time= 80.0 min (972.7 - 892.7)

 Type III 24-hr
 25 yr Rainfall=6.62"

 Printed
 10/30/2023

 _C
 Page 29

Prepared by horsieg willen inc	
HydroCAD® 10.20-2g s/n 01445 © 2022 HydroCAD Software Solutions LLC	

Volume	Invert	Avail.Storage	Storage Description
#1	74.50'	1,759 cf	48.0" Round Pipe Storage Inside #5
			L= 140.0' S= 0.0057 '/'
#2	70.30'	226 cf	6.00'D x 8.00'H Recharge Basin Inside #3
			308 cf Overall - 6.0" Wall Thickness = 226 cf
#3	69.30'	132 cf	10.00'D x 9.00'H RB Stone
			707 cf Overall - 308 cf Embedded = 399 cf x 33.0% Voids
#4	78.20'	16 cf	Custom Stage Data (Prismatic)Listed below (Recalc)
#5	73.50'	1,092 cf	6.00'W x 140.00'L x 6.00'H Pipe Stone
		,	5,040 cf Overall - 1,759 cf Embedded = 3,281 cf x 33.3% Voids

3,226 cf Total Available Storage

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
78.20	20	0	0
79.00	20	16	16

Device	Routing	Invert	Outlet Devices	
#1	Discarded	69.30'	8.270 in/hr Exfiltration over Surface area Phase-In= 0.01'	
#2	Primary	78.30'	24.0" Horiz. Orifice/Grate C= 0.600	
			Limited to weir flow at low heads	

Discarded OutFlow Max=0.18 cfs @ 12.45 hrs HW=78.28' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.18 cfs)

Primary OutFlow Max=4.62 cfs @ 12.59 hrs HW=78.67' (Free Discharge) ←2=Orifice/Grate (Weir Controls 4.62 cfs @ 1.99 fps)

Summary for Pond SP1: Boat ramp

[40] Hint: Not Described (Outflow=Inflow)

Inflow A	Area =	9.468 ac, 1	1.26% Impervious,	Inflow Depth = 0.7	79" for 25 yr event
Inflow	=	5.47 cfs @	12.55 hrs, Volume	= 0.621 af	-
Primary	y =	5.47 cfs @	12.55 hrs, Volume	= 0.621 af,	Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 1.00-72.00 hrs, dt= 0.05 hrs

Summary for Pond SP2: Beach

[40] Hint: Not Described (Outflow=Inflow)

Inflow A	Area :	=	0.166 ac,	0.00% Imp	ervious,	Inflow De	pth =	0.70"	for 25	yr event
Inflow	=	=	0.06 cfs @	12.15 hrs,	Volume	=	0.010 a	af		
Primary	/ =	=	0.06 cfs @	12.15 hrs,	Volume	=	0.010 a	af, At	tten= 0%,	Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 1.00-72.00 hrs, dt= 0.05 hrs
22032 OAKCREST PR Prepared by Horsley Witten Inc HydroCAD® 10.20-2g s/n 01445 © 2022 HydroCAD	Type Software Solutions LLC	e III 24-hr	100 yr Rainfa Printed 10/	// =8 .62″ /30/2023 Page 30
Time span=1.00-72.00 Runoff by SCS TR-20 m Reach routing by Stor-Ind+Trans m	hrs, dt=0.05 hrs, 1421 ethod, UH=SCS, Weig ethod - Pond routing	1 points ghted-CN by Stor-Ind	l method	-
Subcatchment DA1A: Summer Camp Rund	ff Area=298,408 sf 10.0	04% Impervi	ous Runoff Dep	oth=2.52"
Flow Le	ngth=810' Tc=31.6 min	CN=49 R	unoff=10.32 cfs	1.440 af
Subcatchment DA1B: Woods Ru	noff Area=19,988 sf 0.0	00% Impervi	ous Runoff Dep	oth=0.57"
Flow Length=182' Slo	be=0.1600 '/' Tc=9.5 mi	in CN=30	Runoff=0.09 cfs	0.022 af
Subcatchment DA1C: Boat Ramp Run	off Area=94,024 sf 17.5	50% Impervi	ous Runoff Dep	oth=2.07"
Flow Length=327' Slop	==0.1000 '/' Tc=11.2 mi	in CN=45	Runoff=3.75 cfs	0.373 af
SubcatchmentDA2: Parking lot east	unoff Area=7,221 sf 0.0	00% Impervi	ous Runoff Dep	oth=1.53"
	Tc=5.0 mi	in CN=40	Runoff=0.23 cfs	0.021 af
Pond 100: Diversion structure	Peak E	Elev=86.71'	Inflow=9.82 cfs	1.438 af
Primary=1.04 cfs 0.489	af Secondary=8.78 cfs	0.949 af C	0utflow=9.82 cfs	1.438 af
Pond BIO1: Bioretention 1	Peak Elev=82.63' Stora	age=914 cf	Inflow=1.04 cfs	0.489 af
Discarded=0.10 cfs 0.118 af Primary=0.94 cfs 0.371	af Secondary=0.00 cfs	0.000 af C	0utflow=1.04 cfs	0.489 af
Pond D1: Infiltration Basin 1	Peak Elev=79.22' Stora	age=379 cf	Inflow=0.09 cfs	0.022 af
Discarded=0.02 cfs 0.022 af Primary=0.00 cfs 0.000	af Secondary=0.00 cfs	0.000 af C	0utflow=0.02 cfs	0.022 af
Pond F1: Forebay Pe	ak Elev=102.64' Storage	e=1,288 cf I C	nflow=10.31 cfs)utflow=9.82 cfs	1.440 af 1.438 af
Pond I1: Inlet Flume	Peak Elev=103.74' Stora	age=23 cf l Oເ	nflow=10.32 cfs utflow=10.31 cfs	1.440 af 1.440 af
Pond RB1: Perf Pipe/RB Discarded=0.18 cfs 0.2	Peak Elev=78.90' Storag	ge=3,043 cf	Inflow=9.71 cfs	1.320 af
	50 af Primary=9.52 cfs	1.066 af C	outflow=9.70 cfs	1.317 af
Pond SP1: Boat ramp		l Pri	nflow=11.16 cfs imary=11.16 cfs	1.439 af 1.439 af
Pond SP2: Beach		Р	Inflow=0.23 cfs rimary=0.23 cfs	0.021 af 0.021 af
Total Runoff Area = 9.634 ac R	unoff Volume = 1.856	af Avera	ge Runoff Dep	oth = 2.31"

88.94% Pervious = 8.568 ac 11.06% Impervious = 1.066 ac

Summary for Subcatchment DA1A: Summer Camp

10.32 cfs @ 12.49 hrs, Volume= 1.440 af, Depth= 2.52" Runoff = Routed to Pond I1 : Inlet Flume

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 100 yr Rainfall=8.62"

Α	rea (sf)	CN	Description			
	10,717	98	Paved park	ing, HSG B	}	
	13,149	98	Paved park	ing, HSG A	N Contraction of the second	
	588	98	Unconnecte	ed roofs, HS	SG A	
	4,320	98	Unconnecte	ed roofs, HS	SG B	
1	46,058	55	Woods, Go	od, HSG B		
1	22,375	30	Woods, Go	od, HSG A		
	1,201	98	Water Surfa	ace, HSG A		
2	98,408	8 49 Weighted Average				
2	68,433	44	89.96% Pei	vious Area		
	29,975	98	10.04% Imp	pervious Are	ea	
	4,908		16.37% Un	connected		
Tc	Length	Slope	Velocity	Capacity	Description	
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
26.5	100	0.0100	0.06		Sheet Flow,	
					Woods: Light underbrush n= 0.400 P2= 3.65"	
3.5	150	0.0200	0.71		Shallow Concentrated Flow,	
					Woodland Kv= 5.0 fps	
1.6	560	0.0800	5.74		Shallow Concentrated Flow,	
					Paved Kv= 20.3 fps	
31.6	810	Total				

Summary for Subcatchment DA1B: Woods

0.09 cfs @ 12.42 hrs, Volume= Runoff = Routed to Pond D1 : Infiltration Basin 1

0.022 af, Depth= 0.57"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 100 yr Rainfall=8.62"

A	rea (sf)	CN I	Description		
	19,988	30 \	Woods, Go	od, HSG A	
	19,988	30	100.00% Pe	ervious Are	a
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
8.8	100	0.1600	0.19		Sheet Flow,
0.7	82	0.1600	2.00		Woods: Light underbrush n= 0.400 P2= 3.65" Shallow Concentrated Flow, Woodland Kv= 5.0 fps
9.5	182	Total			

Summary for Subcatchment DA1C: Boat Ramp

Runoff = 3.75 cfs @ 12.18 hrs, Volume= 0.373 af, Depth= 2.07" Routed to Pond SP1 : Boat ramp

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 100 yr Rainfall=8.62"

	Area (sf)	CN	Description		
	43,640	30	Woods, Go	od, HSG A	
	2,698	98	Roofs, HSC	θA	
	13,758	98	Paved park	ing, HSG A	N Contraction of the second
	19,021	39	>75% Gras	s cover, Go	bod, HSG A
*	14,907	40	Permeable	pavers	
	94,024	45	Weighted A	verage	
	77,568	34	82.50% Pe	rvious Area	
	16,456	98	17.50% Im	pervious Ar	ea
Т	c Length	Slope	e Velocity	Capacity	Description
(min) (feet)	(ft/ft) (ft/sec)	(cfs)	
10.	5 100	0.1000	0.16		Sheet Flow,
					Woods: Light underbrush n= 0.400 P2= 3.65"
0.	5 227	0.1000	6.42		Shallow Concentrated Flow,
					Paved Kv= 20.3 fps
11.	2 327	Total			

Summary for Subcatchment DA2: Parking lot east

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.23 cfs @ 12.10 hrs, Volume= 0.021 af, Depth= 1.53" Routed to Pond SP2 : Beach

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 100 yr Rainfall=8.62"

Α	rea (sf)	CN	Description				
*	7,221	40	40 Permeable pavers, HSG A				
	7,221	40	100.00% P	ervious Are	ea		
Тс	Length	Slope	Velocity	Capacity	Description		
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
5.0					Direct Entry,		

Summary for Pond 100: Diversion structure

[57] Hint: Peaked at 86.71' (Flood elevation advised)

 Type III 24-hr
 100 yr Rainfall=8.62"

 Printed
 10/30/2023

 LLC
 Page 33

Prepared by Horsley Witten Inc HydroCAD® 10.20-2g s/n 01445 © 2022 HydroCAD Software Solutions LLC

Inflow Area	ı =	6.851 ac, 1	10.04% Impe	ervious, Inflow	v Depth =	2.52"	for 100 yr event	
Inflow	=	9.82 cfs @	12.58 hrs,	Volume=	1.438 a	af	-	
Outflow	=	9.82 cfs @	12.58 hrs,	Volume=	1.438 a	af, Atte	n= 0%, Lag= 0.0 mir	n
Primary	=	1.04 cfs @	12.58 hrs,	Volume=	0.489 a	af		
Routed to Pond BIO1 : Bioretention 1								
Secondary	=	8.78 cfs @	12.58 hrs,	Volume=	0.949 a	af		
Routed	to Pond	RB1 : Perf F	Pipe/RB					

Routing by Stor-Ind method, Time Span= 1.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 86.71' @ 12.58 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	84.50'	6.0" Round To Bio L= 10.0' CMP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 84.50' / 84.00' S= 0.0500 '/' Cc= 0.900 n= 0.013 Concrete nine, bends & connections. Flow Area= 0.20 sf
#2	Device 3	82.00'	18.0" Round To overflow L= 60.0' CMP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 82.00' / 78.00' S= 0.0667 '/' Cc= 0.900 n= 0.013 Concrete pipe, bends & connections. Flow Area= 1.77 sf
#3	Secondary	85.00'	4.0' long x 0.5' breadth Weir in structure Head (feet) 0.20 0.40 0.60 0.80 1.00 Coef. (English) 2.80 2.92 3.08 3.30 3.32

Primary OutFlow Max=1.04 cfs @ 12.58 hrs HW=86.70' (Free Discharge) **1=To Bio** (Inlet Controls 1.04 cfs @ 5.31 fps)

Secondary OutFlow Max=8.76 cfs @ 12.58 hrs HW=86.70' (Free Discharge) 3=Weir in structure (Passes 8.76 cfs of 29.45 cfs potential flow) 2=To overflow (Inlet Controls 8.76 cfs @ 4.96 fps)

Summary for Pond BIO1: Bioretention 1

Inflow Area	=	6.851 ac, 1	0.04% Impe	ervious,	Inflow	Depth =	0.86"	for ´	100 yr e	vent
Outflow	=	1.04 cfs @	12.56 hrs, 12.63 hrs,	Volume	=	0.489	af. Att	en= 19	%. Lag:	= 2.7 min
Discarded	=	0.10 cfs @	12.63 hrs,	Volume	=	0.118	af		<i>,</i> 0	
Primary	=	0.94 cfs @	12.63 hrs,	Volume	=	0.371	af			
Routed	to Pond	RB1 : Perf P	/ipe/RB							
Secondary	=	0.00 cfs @	1.00 hrs,	Volume	=	0.000	af			
Routed	to Pond	D1 : Infiltrati	on Basin 1							
Routing by Stor-Ind method, Time Span= 1.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 82.63' @ 12.63 hrs Surf.Area= 1,753 sf Storage= 914 cf										
Plug-Flow of Center-of-N	detentior /lass det	1 time= 31.6 . time= 31.7	min calcula min (1,070	ted for 0. .8 - 1,03	.489 af 9.2)	(100% oʻ	f inflow)		

Volume	Invert	Avail.Storage	Storage Description
#1	82.00'	2,825 cf	Custom Stage Data (Prismatic)Listed below (Recalc)

Prepared by Horsley W	itten Inc		
HydroCAD® 10.20-2g s/n 0	1445 © 2022 H	vdroCAD Software	Solutions LL

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
82.00	1,200	0	0
82.50	1,600	700	700
83.00	2,200	950	1,650
83.50	2,500	1,175	2,825

Device	Routing	Invert	Outlet Devices
#1	Primary	82.50'	24.0" Horiz. Orifice/Grate C= 0.600
			Limited to weir flow at low heads
#2	Secondary	82.75'	8.0' long x 0.5' breadth Broad-Crested Rectangular Weir
	-		Head (feet) 0.20 0.40 0.60 0.80 1.00
			Coef. (English) 2.80 2.92 3.08 3.30 3.32
#3	Discarded	82.00'	2.410 in/hr Exfiltration over Surface area

Discarded OutFlow Max=0.10 cfs @ 12.63 hrs HW=82.63' (Free Discharge) **3=Exfiltration** (Exfiltration Controls 0.10 cfs)

Primary OutFlow Max=0.94 cfs @ 12.63 hrs HW=82.63' (Free Discharge) -1=Orifice/Grate (Weir Controls 0.94 cfs @ 1.17 fps)

Secondary OutFlow Max=0.00 cfs @ 1.00 hrs HW=82.00' (Free Discharge) 2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond D1: Infiltration Basin 1

Inflow Area	a =	0.459) ac,	0.00% Imp	ervious,	Inflow D	epth =	0.5	7" for	100	yr even	ıt
Inflow	=	0.09 c	cfs @	12.42 hrs,	Volume	=	0.022	af				
Outflow	=	0.02 c	cfs @	17.83 hrs,	Volume	=	0.022	af,	Atten=	82%,	Lag= 3	324.6 min
Discarded	=	0.02 c	cfs @	17.83 hrs,	Volume	=	0.022	af			•	
Primary	=	0.00 c	cfs @	1.00 hrs,	Volume	=	0.000	af				
Routed	to Pond	RB1 :	Perf P	ipe/RB								
Secondary	=	0.00 c	cfs @	1.00 hrs,	Volume	=	0.000	af				
Routed	to Pond	SP1 :	Boat ra	amp								

Routing by Stor-Ind method, Time Span= 1.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 79.22' @ 17.83 hrs Surf.Area= 688 sf Storage= 379 cf

Plug-Flow detention time= 296.6 min calculated for 0.022 af (100% of inflow) Center-of-Mass det. time= 296.7 min (1,268.2 - 971.5)

Volume	Invert	Avail	.Storage	Storage	Description	
#1	78.50'		1,038 cf	Custom	Stage Data (Pr	ismatic)Listed below (Recalc)
Elevation (feet)	Surf. (Area sq-ft)	Inc (cubio	.Store c-feet)	Cum.Store (cubic-feet)	
78.50		350		0	0	
79.00		600		238	238	
80.00	-	1,000		800	1,038	

 Type III 24-hr
 100 yr Rainfall=8.62"

 Printed
 10/30/2023

 LLC
 Page 35

Prepared by Horsley Witten Inc HydroCAD® 10.20-2g s/n 01445 © 2022 HydroCAD Software Solutions LLC

Device	Routing	Invert	Outlet Devices
#1	Secondary	79.40'	12.0' long x 0.5' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 Coef. (English) 2.80 2.92 3.08 3.30 3.32
#2 #3	Discarded Primary	78.50' 79.25'	1.020 in/hr Exfiltration over Surface area 24.0" Horiz. Orifice/Grate C= 0.600 Limited to weir flow at low heads

Discarded OutFlow Max=0.02 cfs @ 17.83 hrs HW=79.22' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 0.02 cfs)

Primary OutFlow Max=0.00 cfs @ 1.00 hrs HW=78.50' (Free Discharge) **3=Orifice/Grate** (Controls 0.00 cfs)

Secondary OutFlow Max=0.00 cfs @ 1.00 hrs HW=78.50' (Free Discharge) —1=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond F1: Forebay

[44] Hint: Outlet device #2 is below defined storage

Inflow Are	a =	6.851 ac, 1	0.04% Impervious,	Inflow Depth = 2.5	52" for 100 yr event
Inflow	=	10.31 cfs @	12.49 hrs, Volume	= 1.440 af	-
Outflow	=	9.82 cfs @	12.58 hrs, Volume	= 1.438 af,	Atten= 5%, Lag= 5.6 min
Primary	=	9.82 cfs @	12.58 hrs, Volume	= 1.438 af	-
Routed	to Pone	d 100 : Divers	ion structure		

Routing by Stor-Ind method, Time Span= 1.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 102.64' @ 12.58 hrs Surf.Area= 1,122 sf Storage= 1,288 cf

Plug-Flow detention time= 1.7 min calculated for 1.438 af (100% of inflow) Center-of-Mass det. time= 1.0 min (893.1 - 892.1)

Volume	Inv	ert Avail.Sto	orage Stor	age Description	
#1	100.	00' 3,4	60 cf Cus	tom Stage Data (P	rismatic)Listed below (Recalc)
Elevatio	on	Surf.Area	Inc.Store	e Cum.Store	
(fee	et)	(sq-ft)	(cubic-feet) (cubic-feet)	
100.0	00	100	(0 C	
100.5	50	180	70	D 70	
101.0	00	300	120) 190	
102.0	00	720	510	D 700	
103.0	00	1,350	1,03	5 1,735	
104.0	00	2,100	1,72	5 3,460	
Device	Routing	Invert	Outlet De	vices	
#1	Primary	100.50'	24.0" Hor	iz. Orifice/Grate	C= 0.600
			Limited to	weir flow at low hea	ads
#2	Device	I 92.00 [°]	18.0" Ro	und Culvert	
			L= 54.0	LiviP, projecting, no	D = 0.000
			n = 0.013	Concrete nine ben	Ids & connections Flow Area= 1 77 sf
			1-0.010	concierce pipe, ben	d = d = 1.11 s

Primary OutFlow Max=9.80 cfs @ 12.58 hrs HW=102.63' (Free Discharge) 1=Orifice/Grate (Passes 9.80 cfs of 22.07 cfs potential flow) 2=Culvert (Inlet Controls 9.80 cfs @ 5.55 fps)

Summary for Pond I1: Inlet Flume

Inflow Area	=	6.851 ac,	10.04% Imp	ervious, Inflow	v Depth = 2	2.52" foi	r 100 yr event
Inflow	=	10.32 cfs @	12.49 hrs,	Volume=	1.440 a	af	•
Outflow	=	10.31 cfs @	12.49 hrs,	Volume=	1.440 a	af, Atten=	0%, Lag= 0.0 mir
Primary	=	10.31 cfs @	12.49 hrs,	Volume=	1.440 a	af	•
Routed t	o Pond	d F1 : Foreba	у				

Routing by Stor-Ind method, Time Span= 1.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 103.74' @ 12.49 hrs Surf.Area= 26 sf Storage= 23 cf

Plug-Flow detention time= 0.2 min calculated for 1.440 af (100% of inflow) Center-of-Mass det. time= 0.1 min (892.1 - 892.1)

Volume	Inv	ert Avail.Sto	orage Storage	e Description	
#1	102.5	50'	30 cf Custor	n Stage Data (Pr	ismatic) Listed below (Recalc)
Elevatio (fee	on et)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
102.5 103.0 104.0	50 00 00	15 15 30	0 8 23	0 8 30	
Device	Routing	Invert	Outlet Devic	es	
#1	Primary	103.00'	5.0' long x Head (feet) Coef. (Englis	0.5' breadth Broa 0.20 0.40 0.60 sh) 2.80 2.92 3.0	ad-Crested Rectangular Weir 0.80 1.00 08 3.30 3.32

Primary OutFlow Max=10.29 cfs @ 12.49 hrs HW=103.74' (Free Discharge) —1=Broad-Crested Rectangular Weir (Weir Controls 10.29 cfs @ 2.78 fps)

Summary for Pond RB1: Perf Pipe/RB

Inflow Area	ı =	7.309 ac,	9.41% Impervious	, Inflow Depth =	2.17" for	⁻ 100 yr event
Inflow	=	9.71 cfs @	12.59 hrs, Volum	e= 1.320	af	-
Outflow	=	9.70 cfs @	12.59 hrs, Volum	e= 1.317	af, Atten=	0%, Lag= 0.2 min
Discarded	=	0.18 cfs @	12.30 hrs, Volum	e= 0.250	af	-
Primary	=	9.52 cfs @	12.59 hrs, Volum	e= 1.066	af	
Routed	to Pond	SP1 : Boat r	amp			

Routing by Stor-Ind method, Time Span= 1.00-72.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 78.90' @ 12.59 hrs Surf.Area= 939 sf Storage= 3,043 cf

Plug-Flow detention time= 45.0 min calculated for 1.317 af (100% of inflow) Center-of-Mass det. time= 43.3 min (924.5 - 881.2)

 Type III 24-hr
 100 yr Rainfall=8.62"

 Printed
 10/30/2023

 LLC
 Page 37

Prepared by Horsley Witten Inc HydroCAD® 10.20-2g s/n 01445 © 2022 HydroCAD Software Solutions LLC

Volume	Invert	Avail.Storage	Storage Description
#1	74.50'	1,759 cf	48.0" Round Pipe Storage Inside #5
			L= 140.0' S= 0.0057 '/'
#2	70.30'	226 cf	6.00'D x 8.00'H Recharge Basin Inside #3
			308 cf Overall - 6.0" Wall Thickness = 226 cf
#3	69.30'	132 cf	10.00'D x 9.00'H RB Stone
			707 cf Overall - 308 cf Embedded = 399 cf x 33.0% Voids
#4	78.20'	16 cf	Custom Stage Data (Prismatic)Listed below (Recalc)
#5	73.50'	1,092 cf	6.00'W x 140.00'L x 6.00'H Pipe Stone
		·	5,040 cf Overall - 1,759 cf Embedded = 3,281 cf x 33.3% Voids

3,226 cf Total Available Storage

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
78.20	20	0	0
79.00	20	16	16

Device	Routing	Invert	Outlet Devices	
#1	Discarded	69.30'	8.270 in/hr Exfiltration over Surface area Phase-In= 0.01'	
#2	Primary	78.30'	24.0" Horiz. Orifice/Grate C= 0.600	
			Limited to weir flow at low neads	

Discarded OutFlow Max=0.18 cfs @ 12.30 hrs HW=78.77' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.18 cfs)

Primary OutFlow Max=9.50 cfs @ 12.59 hrs HW=78.90' (Free Discharge) ←2=Orifice/Grate (Weir Controls 9.50 cfs @ 2.53 fps)

Summary for Pond SP1: Boat ramp

[40] Hint: Not Described (Outflow=Inflow)

Inflow A	Area =	9.468 ac,	11.26% Impervious,	Inflow Depth = 1.8	82" for 100 yr event
Inflow	=	11.16 cfs @	12.51 hrs, Volume	= 1.439 af	-
Primary	y =	11.16 cfs @	12.51 hrs, Volume	= 1.439 af,	Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 1.00-72.00 hrs, dt= 0.05 hrs

Summary for Pond SP2: Beach

[40] Hint: Not Described (Outflow=Inflow)

Inflow /	Area	=	0.166 ac,	0.00% Imp	ervious,	Inflow Dep	th =	1.53"	for 100) yr event
Inflow		=	0.23 cfs @	12.10 hrs,	Volume	= 0	.021 a	ſ		
Primary	у	=	0.23 cfs @	12.10 hrs,	Volume	= 0	.021 a	lf, At	ten= 0%,	Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 1.00-72.00 hrs, dt= 0.05 hrs

APPENDIX C – Wetland Resources Summary Memo

MEMORANDUM

То:	Jordan Mora, APCC
From:	Ben Wollman, Wetland Scientist
Date:	December 2, 2022
Re:	Wetland Resources – Oak Crest Cove Boat Ramp Stormwater Retrofit Site, Sandwich, MA

HW has prepared the following memo and site figures to document the wetland resource areas at the referenced site and to provide regulatory context for future work.

General Site Description

The site is located at the northern extent of Peters Pond at the southern end of Sandwich, MA, adjacent to the Oakcrest Cove Lodge, focused on the recreation center parking lot and tennis court areas, as well as the vegetated woodland area just northwest of the tennis courts.

FEMA Designation

According to the FEMA National Flood Hazard Map (Community Panel No. 25001C0528J, effective July 16, 2014), the site is located outside of any Flood Hazard Areas; however, there is a Zone X area (Other Flood Hazard Areas with 0.2% annual chance of flooding) adjacent to the site, along the edge of the Peters Pond (**Figure 1**).

State-listed Rare Species Habitat and Open Space

According to the most recent version of the *Massachusetts Natural Heritage Atlas* (15th Edition, August 1, 2021), there are no areas of *Estimated Habitat of Rare Wildlife and Certified Vernal Pools* and/or *Priority Habitat of Rare Species* located at the site, as designated by the Massachusetts Natural Heritage and Endangered Species Program (NHESP); however, there is an area of *Priority Habitat of Rare Species* (PH 334) located approximately ¼ mile to the northeast of the site and (**Figure 2**).

Wetland Resource Areas

The site supports freshwater wetland resource areas, as defined under the Massachusetts *Wetlands Protection Act* (M.G.L. Ch. 131 § 40) and the Town of Sandwich Wetland Protection By-law (Chapter 7) and their respective regulations. Horsley Witten Group, Inc. (HW) wetland biologists identified and delineated these resource areas during a site visit on December 2, 2022. Jurisdictional areas identified on or adjacent to the site include Bank; Vegetated Wetland (isolated); Land Under Waterbodies and Waterways (LUW); and the 50-foot No Disturb and 100-foot Buffer Zones to Bank and Vegetated Wetland.

Figure 1. Excerpt from Federal Emergency Management Agency (FEMA) FIRMette for the subject site.

Figure 2. Rare species habitat (Source: MassMapper 2022).

Jordan Mora, APCC December 2, 2022 Page 3 of 5

HW followed wetland resource area identification and on-site delineation procedure guidelines described in the Massachusetts Department of Environmental Protection (MassDEP) handbook, entitled *Delineating Bordering Vegetated Wetlands Under the Massachusetts Wetlands Protection Act* (March, 1995), Massachusetts Wetlands Protection Act (M.G.L. Ch. 131 § 40), and its implementing Regulations (310 CMR 10.00), and the Town of Sandwich *Wetland Protection By-law* (Chapter 7) and associated Sandwich Conservation Commission Regulations.

Prior to conducting field delineations, HW reviewed existing source data, including USGS Geological Survey 7.5 minute topographic maps, Massachusetts Department of Environmental Protection (MassDEP) wetlands source data available through the Massachusetts Geographic Information System (MassGIS), USDA Natural Resources Conservation Service (NRCS) soils survey, U.S. Fish and Wildlife Service National Wetland Inventory (NWI) maps, and other source data to identify the presence of jurisdictional wetlands and waters of the United States within the site. This information was used to compile base mapping to assist in the understanding of the hydrologic variables, soils conditions, and vegetation communities (where applicable).

A brief description of the regulatory definitions and the observed resources areas is provided below.

Bank

Bank is defined at 310 CMR 10.54(2)(a) as:

"...the portion of land surface which normally abuts and confines a water body. It occurs between a water body and a vegetated bordering wetland and adjacent floodplain, or, in the absence of these, it occurs between a water body and an upland. A Bank may be partially or totally vegetated, or it may be comprised of exposed soil, gravel or stone. The upper boundary of a Bank is first observable break in the slope or the mean annual flood level, whichever is lower. The lower boundary of a Bank is the mean annual low flow level" [310 CMR 10.54(2)(c)].

Bank is present around the perimeter of Peters Pond (**Photo 1**). HW used a combination of observed variables to determine the mean annual flood level/top of Bank, including water line markings and adventitious roots along the base of the existing woody vegetation growing on the Bank and changes in vegetative cover. Commonly observed vegetation along the Bank includes gray willow (*Salix cinerea*), arrowwood viburnum (*Viburnum dentatum*), multiflora rose (*Rosa multiflora*), Japanese honeysuckle (*Lonicera japonica*), and purple loosestrife (*Lythrum salicaria*).

HW delineated the landward boundary of the Bank with a series of consecutively numbered blue flagging stations labeled MAHW 1 – MAHW 10. These flagging stations have been relabeled on the existing conditions plan as BANK, rather than MAHW.

The Sandwich Conservation Commission accepts and adopts defined pond elevations as found under Section 3610, Article III of the Town of Sandwich Zoning Bylaws, as stated in Regulation No. 1 of the Sandwich Conservation Commission Regulations. The pond elevation defined for

Jordan Mora, APCC December 2, 2022 Page 4 of 5

Peters Pond under Regulation No. 1 is stated as 71 feet (NGVD). HW uses this elevation, converted to 70.13 feet (NAVD 88), to show the upland edge of Peters Pond, which serves to define the upper boundary for the Bank and the associated 50-foot and 100-foot buffers, as locally regulated by the Town of Sandwich.

Photo 1. Looking northeast from the boat ramp at the Bank along the pond's perimeter.

Vegetated Wetland

The Sandwich Wetland Protection Bylaw (Section 7.10) lists vegetated wetland as a jurisdictional resource area, subject to the provisions of the bylaw and associated regulations. The site supports an isolated Vegetated Wetland area to the east of the recreation center's parking lot (**Photo 2**). The wetland is confined by steep rising slopes along its perimeter, particularly at the western and southern sides, located closest to the project site. The wetland is approximately 1.25 acres in size and sits at the bottom of a deep basin located approximately 250 feet landward of the pond and is characterized as a shrub swamp. Commonly observed vegetation in the shrub swamp wetland includes swamp loosestrife (*Decodon verticillatus*), red maple (*Acer rubrum*), arrowwood viburnum, sweet-pepperbush (*Clethra alnifolia*), highbush blueberry (*Vaccinium corymbosum*), gray willow, steeplebush (*Spiraea tomentosa*), woolgrass (*Scirpus cyperinus*), and soft rush (*Juncus effusus*).

HW delineated the boundary of the Vegetated Wetland with a series of consecutively numbered pink flagging stations labeled IVW 1 - IVW 9.

Photo 2. Looking south along the western edge of the shrub swamp wetland.

Invasive Species

Invasive or Likely Invasive species (as defined by the Massachusetts Invasive Plant Advisory Group) were present at the site. The forested hillside to the north and east of the tennis court area and the slopes adjacent to the driveway leading down to the boat ramp contained a high density of invasive plant species including multiflora rose, Asiatic bittersweet (*Celastrus orbiculatus*), shrub honeysuckle (*Lonicera sp.*), Japanese honeysuckle and border privet (*Ligustrum obtusifolium*). Additionally, the Bank along the pond edge contained significant densities of invasive gray willow. The Massachusetts Invasive Plant Advisory Group identifies invasive plant species as "non-native species that have spread into native or minimally managed plant systems in Massachusetts," and which "cause economic or environmental harm by developing self-sustaining populations and becoming dominant and/or disruptive to those systems." For future planning purposes, the Town may wish to develop a management plan for reducing or eliminating these plants at this site to allow for the establishment of naturally vegetated protective buffers to the wetland resource areas.

If you have any questions regarding our findings, or if HW may be of further assistance, please do not hesitate to contact me directly at <u>bwollman@horsleywitten.com</u> or at (508) 833-6600.

APPENDIX D – Soil Test Pit Logs

Commonwealth of Massachusetts City/Town of Sandwich

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

C. Or	ו-Site	Review
-------	--------	--------

Deep C	Observation Ho	ble Number: 1	e Number: $\frac{1}{Hole \#}$ $\frac{1/24/2}{Date}$			23 855A Time			35F Cloudy Weather		41º41'41.33"N Latitude	70º29'25.08"W Longitude	
1. Land U	se: Basketba	Il court	d vooant lat		Pines			- N	0 urfago Stoppo (o.g.	aabblaa atanaa ba	ulders etc.)	3%	
Descr	iption of Locatio	on: Off east edg	e of bask	etball cour	t			50	inace Stones (e.g.	cobbles, stones, bo	ulders, etc.)	Slope (%)	
2. Soil Pa	rent Material:	Sandy and grav	velly glaciofl	uvial		Outwa Landfor	ash plains	s, terraces	Back	slope on on Landscape (S	SU, SH, BS, FS, T	S)	
3. Distanc	es From:	Open Wat	er Body	200		feet	Draina	ge Way		feet W	etlands	feet	
		Prope	rty Line	50+		feet Drin	king Wat	ter Well		feet	Other	feet	
4. Unsuita	able Materials P	resent: Ves	√ No	If Yes:	🗌 Di	sturbed Soil	🗌 Fil	l Material	🗌 Weat	hered/Fractured Ro	ck 🗌 Be	edrock	
5. Groundwater Observed:YesNo If Yes						Dep	th weeping	from pit		Depth stand	ing water in hole		
	Soil Log												
Depth (in)	Soil Horizon/ Layer	Soil Texture (USDA)	Soil Mat Moist (rix: Color- Munsell)	Redo	ximorphic F	eatures	Coarse % b	e Fragments by Volume	Soil Structure	Soil Consistence	Other	
0-9	FILL	SL	10Y	′R 3/4	Depth	Color	Percent	Gravel	Cobbles/Stones	М	(Moist) Fr		
9-15	Ab	SL	10Y	′R 3/2						М	Fr		
15-24	Bw	SL	10Y	′R 3/3						М	Fr		
24-42	C1	LS	10Y	′R 6/3						SG	Fr		
42-80	C2	G-CS	10Y	′R 5/4				30		SG	Fr		
80-114	C3	MS	10Y	′R 6/6						SG	Fr		
Additional	Notes:												

City/Town of Sandwich

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

Deep C	Observation H	ole Number: 1	lole #	1/24/23 Date	3	1	005A ime		40F Sun Weather		41º41'41.86"N Latitude	70º29'24.32"W		
1. Land U	se: Parking I	ot and, agricultural fie	eld, vacant lot	t, etc.)	Grass, cedars Vegetation			N S	lo urface Stones (e.g.	cobbles, stones, bo	ulders, etc.)	15% Slope (%)		
Descr	iption of Locati	on: Off west ed	lge of uppe	er parking a	area									
2. Soil Pa	rent Material:	Sandy and gr	avelly glaciof	uvial		Outwa Landfor	ash plains	s, terraces	s Bacl	slope	SU. SH. BS. FS. T	S)		
3. Distanc	es From:	Open Wa	iter Body	200+		feet	Draina	ge Way		feet W	etlands	feet		
		Prop	erty Line	50+		feet Drin	king Wat	er Well		feet	Other	feet		
4. Unsuitable Materials Present:Ye			√ No	If Yes:	🗸 Di	sturbed Soil	🗌 Fil	l Material	U Weat	hered/Fractured Ro	ck 🗌 Be	edrock		
5. Ground	lwater Observe	ed: 🗌 Yes	√ No	If Yes:	Depth weeping from pit				Depth standing water in hole					
						5	Soil Log							
Depth (in)	Soil Horizon/ Laver	Soil Texture (USDA)	Soil Mat Moist (trix: Color- Munsell)	Redo	ximorphic Fe	eatures	Coars % t	e Fragments by Volume	Soil Structure	Soil Consistence	Other		
(,		()		()	Depth	Color	Percent	Gravel	Cobbles/Stones		(Moist)	+		
0-15	FILL	SL	10\	′R 5/6						М	Fr			
15-20	Ab	SL	10\	′R 3/2						М	Fr			
20-24	Bw	SL	10\	′R 4/6						М	Fr			
24-33	C1	LS	10\	′R 4/6						SG	Fr			
33-108	C2	MS	10ነ	′R 6/4						SG	Fr			
Additional	Notes:								•	1				

APPENDIX E – Operation and Maintenance Guide

Stormwater Operations & Maintenance Guide

Oak Crest Cove Boat Ramp

Table of Contents

1.	IN	NTRODUCTION	2
2.	R	RESPONSIBLE PARTIES AND BUDGET	3
3.	G	GREEN STORMWATER INFRASTRUCTURE	4
	3.1.	. How Does Green Infrastructure Work?	4
3	3.2.	. What is required for Maintenance?	4
	3.3.	. What practices are used at this site?	5
4.	ST	STRUCTURAL COMPONENTS: BIORETENTION AREAS	6
5.	ST	STRUCTURAL COMPONENTS: INFILTRATION BASIN	8
6.	ST	STRUCTURAL COMPONENTS: UNDERGROUND INFILTRATION	10
7.	ST	STRUCTURAL COMPONENTS: POROUS PAVEMENT	12
8.	ΡI	PLANTINGS	14
8	3.1.	. Plantings	14
9.	G	GENERAL SITE MAINTENANCE	24
10		LONG-TERM POLLUTION PREVENTION MEASURES	25

APPENDICES

- A. Maintenance Checklists
- B. Overall Stormwater Control Measures Locations Plan
- C. Planting Plan

1. INTRODUCTION

This document provides a general description along with the operation and maintenance requirements for the Oak Crest Cove Boat Ramp Stormwater Retrofit project at 34 Quaker Meetinghouse Road. The responsible parties are required to inspect and maintain all measures as outlined in this maintenance guide throughout the year. Site maintenance is divided into three categories as outlined below.

- **1.** Green Stormwater Infrastructure
 - Structural Components
 - Structural Maintenance Schedule
 - Planting
 - Landscape Maintenance Schedule
 - Weed Guide
- 2. General Site Maintenance
 - Trash & Debris
 - Pet Waste
 - Pavement Sweeping
 - Contributing Drainage Areas
 - Snow Removal
 - De-icing
- 3. Long-Term Pollution Prevention Measures

2. RESPONSIBLE PARTIES AND BUDGET

The Oak Crest Cove Boat Ramp is located on Town of Sandwich property. The Town will provide staff, volunteers as possible, and funding for the long-term O&M at the site. The estimated average annual O&M budget for the proposed system is shown below:

•	Bioretentions (1):	\$2,000
•	Porous Pavement (2):	\$3,000
	(\$1,500/cleaning)	
•	Drainage Structures (RB 100 & DMH 100) (\$500/structure)	\$1,000

Owner contact information is provided below:

Owner: Contact:	Town of Sandwich Department of Public Works Paul S. Tilton, Director 500 Route 130 Sandwich, MA 02563 ptilton@sandwichmass.org 508-833-8002		
Contact:	Department of Recreation Tricia MacDonald, Director 34 Quaker Meetinghouse Road Forestdale, MA 02644 tmacdonald@sandwichmass.org 508-888-4361		
Owner - Signature:		Date:	
Owner - Signature:		Date:	

3. GREEN STORMWATER INFRASTRUCTURE

3.1. How Does Green Infrastructure Work?

Green Stormwater Infrastructure (GSI) is a nature-based approach to stormwater treatment and management. These stormwater practices or "treatment areas" are designed to mimic nature and use the natural filtration properties of soil and plants to remove pollutants from stormwater runoff prior to discharging to the municipal drainage system or waterbodies.

GSI relies on the following basic steps to function properly. Structural components of the practices facilitate the functioning of the steps. If one of these steps, or components, does not work properly, the entire system can be compromised and the GSI practice itself could be contributing to maintenance problems. This can lead to landscape nuisances, more frequent maintenance, and costly repairs/improvement. The steps are:

- 1. Collect (Inlets)
- 2. *Move Water* (Conveyance) if needed, can come after capturing sediment
- 3. Capture Sediment (Pretreatment)
- 4. Treat and Manage (Filter, Infiltrate or Store)
- 5. Overflow (Structures and Spillways)

3.2. What is required for Maintenance?

As these are nature-based systems that rely on plant upkeep, the maintenance for GSI typically falls under landscape and general site maintenance services. Proper operation and maintenance (O&M) are vital to its long-term viability. Regularly scheduled maintenance can prevent system failures due to sediment build-up, damage, or deterioration. The maintenance requirements outlined in this guide are critical to ensure proper treatment, maintain storage capacity and preserve the visual integrity.

General maintenance includes the following:

- 1. Removing sediment from the pretreatment practices used to capture sediment.
- 2. Maintaining the proper drainage function and pollutant removal capacity of the systems.
- 3. Maintaining healthy native trees, plants, and vegetative cover as well as the removal of unwanted weeds and invasive species.

It is recommended that all practices be maintained regularly as part of the routine landscape maintenance or at a minimum four times per year and after major rain events:

- Early Spring: during spring cleanup
- Summer: during lawn mowing and other routine site maintenance
- Early Fall: when leaves begin to fall
- Late Fall/Early Winter: after all the leaves have fallen during leaf removal
- After major storm events: 2" of rain or greater.

The following sections describe the general function and landscape maintenance of each practice on the site. Included in the appendices is a specific Inspection Report for the site (**Appendix A**) along with a plan showing the location of the items to be inspected and maintained (**Appendix B**).

3.3. What practices are used at this site?

The following practices are present at this site:

- a. Bioretention Areas: A bioretention area is a stormwater management practice to manage and treat stormwater runoff using a conditioned planting soil bed or "filter" media and plants to filter runoff captured in a shallow depression. The method combines physical filtering and adsorption with bio-geochemical processes to remove pollutants.
- b. Infiltration Basin: Infiltration basins are surface practices that are designed to capture, temporarily store, and infiltrate stormwater, allowing it to infiltrate into the underlying native soil.
- c. Underground Infiltration: Recharge basins and perforated pipes are used for temporary underground storage of stormwater, allowing it to infiltrate into the underlying native soil.
- d. Porous Pavement: Porous pavements are designed to capture and infiltrate runoff. The areas of porous pavement have been placed to ensure they do not collect runoff from the traditional impervious pavement, as this can clog the pervious pavement. Regular maintenance is critical to the success of this practice.

The maintenance for the green infrastructure is divided into two categories:

- a. The Structural Components that make up the basic steps of a functioning system.
- b. The **Plantings** that are the landscape and filtration element.

Each category is further described in the sections below.

4. STRUCTURAL COMPONENTS: BIORETENTION AREAS

Structural Components

- **1.** *Collect*: Stormwater runoff is directed to paved flume inlet where stormwater enters the sediment forebay.
- 2. *Capture Sediment*: Sand and debris settle out within the sediment forebay.
- **3.** *Move Water:* The stormwater discharges to the bioretention area via an overflow structure in the sediment forebay and a diversion structure upgradient of the bioretention area.
- 4. Treat and Manage: Stormwater overtops the forebay overflow structure, flows through the diversion structure, and into the planted bioretention area. Plants slow the water down, and the soil media and plant roots filter the runoff, removing nutrients and bacteria. The treated water then infiltrates into the soil below or overflows as described below.
- 5. **Overflow**: During rain events larger than 1 inch, much of the runoff will overtop the weir in the diversion structure, bypass the bioretention area, and connect into the underground infiltration components. Additionally, in the bioretention area, runoff greater than the water quality volume will overflow either into the outlet structure to the underground infiltration components or in extreme events, flow over the emergency spillway.

MAINTENANCE SCHEDULE: BIORETENTION AREAS

A site inspection of the bioretention components shall be conducted at least twice a year in the Spring and Fall, and after major storm events (2" of rain or greater). Debris and trash should be removed monthly (between April and November) and sediment removal should occur during the two site inspections and during the monthly debris and trash inspections as needed. See the calendar below and the Inspection Report in **Appendix A** for more information.

Bioretention General Maintenance Schedule													
	Jan	Feb	Mar	Apr	May	Jun	July	Aug	Sep	Oct	Nov	Dec	
Task	Frequency & Time of the Year												
Site Inspection				х	x x								
Debris & Trash Removal				x	x	x	x	x	х	х	х		
Sediment Removal				х	x	x	x	x	x	x	х		

should also be completed after major storm events

- **X** required inspection
- x as needed
 - When removing trash and debris during monthly inspections look for:
 - If sediment is > 3" in paver lined sediment forebays. Ensure sediment does not cause blockage of inlet weirs. If it is, remove sediment.
 - If standing water does not drain after 48 hours. See Inspection Report for action items.
 - After rain event look for:
 - If standing water does not drain after
 48 hours. See Inspection Report for action items.

Use a shovel to clear stone and sediment from the inlets.

See Plantings section for information on plantings maintenance of the bioretention area. Use the plantings maintenance calendar to combine maintenance efforts.

7

5. STRUCTURAL COMPONENTS: INFILTRATION BASIN

- **1.** *Collect*: Stormwater runoff is collected via overland flow from the wooded area.
- 2. *Capture Sediment*: No forebay is needed since no impervious area runoff is directed to the basin unless prior pretreatment (by the bioretention system) has occurred.
- 3. Move Water: NA
- 4. *Infiltrate*: Stormwater is infiltrated into the subsoils.
- **5. Overflow**: During larger rain events, the stormwater will fill up the basin and overflow into the underground infiltration system.
- 6. During larger rain events, the runoff will flow over the emergency spillway directed towards the courts.

MAINTENANCE SCHEDULE: INFILTRATION BASIN

A site inspection of the infiltration basin components shall be conducted at least twice a year in the Spring and Fall, and after major storm events (2" of rain or greater). Debris and trash should be removed monthly (between April and November) and sediment removal should occur during the two site inspections and during the monthly debris and trash inspections as needed. See the calendar below and the Inspection Report in **Appendix A** for more information.

	Bioretention General Maintenance Schedule													
	Jan	Feb	Mar	Apr	May	Jun	July	Aug	Sep	Oct	Nov	Dec		
Task		Frequency & Time of the Year												
Site Inspection				x	x x									
Debris & Trash Removal				x	x	x	x	x	х	х	х			
Sediment Removal				x	х	х	х	х	х	х	х			

should also be completed after major storm events

- **X** required inspection
- x as needed
 - After rain event look for:
 - If standing water does not drain after 48 hours. See Inspection Report for action items.

See Plantings section for information on plantings maintenance of the infiltration basin. Use the plantings maintenance calendar to combine maintenance efforts.

Structural Components

- **1.** *Collect*: Stormwater runoff is collected in the perforated pipe via the upgradient drainage infrastructure (diversion structure, overflow structure, drain pipe).
- 2. *Capture Sediment*: No sediment removal component is needed here since pretreatment is already provided by a sediment forebay and bioretention system before runoff is directed to the underground infiltration features (perforated pipe and recharge basin).
- 3. *Move Water:* The stormwater will flow through a perforated pipe and into the recharge basin.
- 4. *Infiltrate*: Stormwater is infiltrated through the perforations in the pipe and recharge basin structure, as well as the surrounding stone.
- **5. Overflow**: During larger rain events, the stormwater will fill up the pipe and recharge basin and overflow out of the grate. Stormwater will continue down the boat ramp and into Peter's Pond.

A site inspection of the underground infiltration shall be conducted at least twice a year in the Spring and Fall, and after major storm events (2" of rain or greater). See the calendar below.

Pervious Pavement and Pavers General Maintenance Schedule													
	Jan	Feb	Mar	Apr	May	Jun	July	Aug	Sep	Oct	Nov	Dec	
Task	Frequency & Time of the Year												
Site Inspection				x	x x								
Debris & Trash Removal				х	x	x	x	x	х	x	х		
Sediment Removal				х	x	х	х	x	х	х	х		

should also be completed after major storm events

- **X** required inspection
- x as needed
 - When removing trash and debris during monthly inspections and after rain events look for standing water. If it does not drain after 48 hours. See Inspection Report for action items.

7. STRUCTURAL COMPONENTS: POROUS PAVEMENT

Structural Components

- 1. *Collect*: Stormwater runoff is absorbed directly into the pervious surface when it rains.
- Capture Sediment: Porous pavements are designed for minimal run-on from permeable surfaces (like lawn areas) and no runoff from impervious pavement, so sediment should be minimal. Sediment trapped on the surface of the porous pavement should be vacuumed before the surface course clogs.
- 3. *Move Water:* The stormwater filters through the surface material and choker courses.
- 4. *Treat and Manage*: The stormwater is treated as it flows through the filter course into the underlying native soils.
- 5. **Overflow**: During larger rain events, once the porous pavement and gravel below are saturated, additional runoff will flow to the existing catch basin systems that discharge to Peter's Pond via the boat ramp and beach.

A site inspection of the porous pavement shall be conducted at least twice a year in the Spring and Fall, and after major storm events (2" of rain or greater). See the calendar below.

Pervious Pavement and Pavers General Maintenance Schedule												
	Jan	Feb	Mar	Apr	May	Jun	July	Aug	Sep	Oct	Nov	Dec
Task	Frequency & Time of the Year											
Site Inspection				x x								
Debris & Trash Removal				x	x	x	x	x	x	x	x	
Sediment Removal	x	x	x	х	x	х	x	x	x	x	х	х

should also be completed after major storm events

- **X** required inspection
- x as needed

Frequent cleaning and maintenance are critical to prevent clogging of porous surfaces. To keep the surface clean, sweep the porous pavement using vacuum sweepers at least twice a year.

No sanding or de-icing is permitted. Full porous pavement replacement will be conducted every 10-20 years or as determined necessary due to field conditions.

8. PLANTINGS

8.1. Plantings

The planting design for the site consists of three landscape maintenance areas. The "mow" area (consisting of turf that can be cut regularly with a mower or trimmer), the "no mow" areas (which can be cut back with shears one time per year or less), and natural areas (no cutting unless for invasives). The plantings maintenance checklist is included in **Appendix A**, and the full planting plan is available in **Appendix D**.

There is an area of the site that is allowed to be maintained as "mowed" lawn as necessary. Landscape maintenance of "mowed" lawn areas includes the following:

Seeding

Loam and reseed bare spots with a seed mix that matches existing species.

Mowing/Weed Whacking

Cut only 1/3 of vegetation. Do not mow during drought periods or when excessively wet. Depending on height of grasses and the time of year, grass cuttings/stalks may need to be raked and removed from site.

Watering

Allowing the lawn areas to "brown" is desired. Water only during drought conditions or during reseeding establishment period.

Fertilizing

No fertilizer shall be used.

Weeding

Weeding should be limited to invasive and weedy species (see section 3.6 Weed Identification below and the Weed Guide at https://web.uri.edu/riss/files/In-the-Weeds.pdf). Non-chemical methods (hand pulling and hoeing) are required; chemical herbicides should be avoided. Properly remove and dispose of all invasive species off site as to prevent colonization elsewhere, this includes disposal on land beyond the project area.

Monitoring

During the establishment period, walk the mow areas monthly during the first year to look for invasive species, bare spots and identify potential pest or disease problems. Properly remove and dispose of all invasive species as to prevent colonization elsewhere, this includes disposal on land beyond the project area.

Debris & Trash

Remove and properly dispose litter from all areas prior to mowing.

By design, plants in bioretention areas are meant to flourish throughout the growing season leaving dry standing stalks during the dormant months. Plants do not require fertilizers or watering (except during drought or establishment period). This area, as well as the area surrounding the forebay, is designated as "no mow." Frequent mowing would eliminate selected meadow species, may promote the growth of undesirable plants, and require additional maintenance and watering. It is recommended this area be cut back no more than one time per year and only as necessary. Remove and replace vegetation as necessary, using the appropriate species as shown on the Planting Plan. The best time to plant is in early to mid-fall or early to mid-spring. Specific maintenance activities of the "no mow" area include:

Seeding

Loam and reseed bare spots with the specified seed mix as shown on the Planting Plan.

Cutting Back

Recommend cutting with shears a maximum of once a year in early spring. Otherwise, allow areas to grow to their natural heights (12" to 36") to maintain a meadow appearance. Do NOT cut area lower than 6" – maintain sporadic wooden stakes on site at 6" height to provide visual cues during cutting. Depending on height of grasses and the time of year, grass cuttings/stalks may need to be raked and removed from site so as not to clog the bioretention. Use a leaf blower as needed to assist in clean-up.

Pruning

Prune trees and shrubs to remove deadwood and low hanging branches.

Watering

Water only during drought conditions or during reseeding establishment period.

Fertilizing

No fertilizer shall be used.

Weeding

Weeding should be limited to invasive and weedy species (see section on Weed Identification below and the Weed Guide at https://web.uri.edu/riss/files/In-the-Weeds.pdf). Non-chemical methods (hand pulling and hoeing) are required; chemical herbicides should be avoided. Properly remove and dispose off site all invasive species as to prevent colonization elsewhere; this includes disposal on land beyond the project area.

Monitoring

During the establishment period, walk the "no mow" areas monthly without the intent to cut, but to look for invasive species, bare spots and identify potential pest or disease problems.

Debris & Trash

Remove and properly dispose of litter from all areas.

This area is intended to be kept as natural area and is not to be disturbed. Maintenance of natural areas includes the following:

Monitoring

Walk the areas to look for potential invasive species and identify potential disease.

Weeding

Weeding should be limited to invasive and weedy species (see section 3.6 Weed Identification below and the Weed Guide at https://web.uri.edu/riss/files/In-the-Weeds.pdf). Non-chemical methods (hand pulling and hoeing) are required; chemical herbicides should be avoided. Properly remove and dispose of all invasive species as to prevent colonization elsewhere; this includes disposal on land beyond the project area.

Watering

Water only during drought conditions or during the plant establishment period.

Debris & Trash

Remove and properly dispose litter from all natural areas.

PLANTINGS: REPLACEMENTS

The plants that thrive in bioretention areas are typically quite drought tolerant due to the filter profile having a top layer of planting soil and sandy soil media below. They need to be able to withstand periods of inundation after storm events; however, when it doesn't rain, there will be less water held naturally in the sand than in other soil types for the plants to use, so they need to tolerate dry periods as well.

Specifying plants native to the area increases the ecosystem benefits by helping to support native wildlife like pollinators.

If replacements are needed, use the planting plan as a guide (see **Appendix D**). However, if all the plants of a certain species have not done well in the bioretention area or other locations on the site, do not replace with that same species. Rather, replant with one or more of the other species that has thrived under the conditions or have a plant professional choose a different species based on current photos of the site.

Site specific considerations for plants in bioretention areas should be:

- Preferably native
- Drought tolerant
- Tolerant of inundation for 24 hours
- Size constraints:
 - taller perennials at the bottom of the bioretention
 - shorter perennials on the side slopes
- Shade tolerant
- Culturally important
- A mix of different types of plants that will create a resilient plant community: cold & warm season grasses, perennials, groundcovers in all areas.

PLANTINGS: MAINTENANCE SCHEDULE

By design, plants in the bioretention area are meant to help filter the stormwater as it passes through and flourish throughout the growing season. The plants do not require fertilizers or mulch, and, after establishment, only need water during periods of drought. Remove and replace vegetation as necessary, using the appropriate species as discussed in the no-mow section above. Weeding and monitoring for invasive species should occur quarterly during the growing season. An annual spring "clean up" includes cutting last season's growth of the perennials and pruning as needed. See the calendar below, the Plantings Maintenance Checklist in **Appendix A**, the Weed Identification section, and the Weed Identification Guide at <u>https://web.uri.edu/riss/files/In-the-Weeds.pdf</u> for more information.

Bioretention Landscape Maintenance Schedule												
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Task		Frequency & Time of the Year										
Cutting				х								
Mowing				x	х	x x	ххх	k x l	X x	x		
Weeding				х		Х		2	x)	(
Monitoring				х		Х		2	x)	(
Watering						x	х	х	х			
Seeding				x	x				x	x		
Plant Replacement				х	x				x	x		

"Mow" Areas No "Mow" Areas All areas

- **X** required
- x as needed
 - Trash and debris are removed during monthly structural component inspections but can also be completed during landscape maintenance visits for weeding and monitoring.

Redroot Pigweed- (Amaranthus retroflexus)

Smartweed (Polygonum lapathifolium)

Dandelion (Taraxacum officinale)

Fireweed (Erechtites hieracifolia)

Spotted Spurge (Euphorbia maculata)

Crabgrass (Digitaria ischaemum)

Crabgrass with seedheads

Ragweed (Ambrosia artemisiifolia)

Oriental Bittersweet (Celastrus orbiculatus)

Catalpa Tree Seedling (Catalpa speciosa)

Purple Loosestrife (Lythrum salicaria)

Field Bindweed (Convolvulus arvensis)

Black Swallow-wort (Cynanchum Iouisea)

9. GENERAL SITE MAINTENANCE

General site maintenance includes the following requirements:

Trash & Debris

Remove and properly dispose of all trash and debris.

Pet Waste

Visitors to the site are encouraged to pick up after their pets. Remove and properly dispose of all pet waste left behind. Pet waste should be picked up and disposed of properly to reduce bacteria and nutrient levels in stormwater.

Pavement Sweeping

Paved roadways should be mechanically swept, at a minimum of once per year in early spring, to remove accumulated sand and sediment debris. Porous pavement should be swept using a vacuum sweeper at least twice a year.

Snow Removal

Due to the potential for plant damage, snow piling and or removal is NOT recommended in the bioretention areas. Additionally, to prevent clogging of the porous pavement snow piling is NOT permitted on the porous pavement areas.

De-Icing

When de-icing compounds are necessary for areas draining to the green stormwater infrastructure, the least harmful chemicals should be used. Excessive salting should be avoided. Use of large amounts of sand should also be avoided, since it may obstruct the conveyance system. Ice removal is NOT permitted in the bioretention areas. For the porous pavement areas, avoid sanding or excessive salting.

Long-term pollution prevention measures implemented at the site reduce pollutants in stormwater discharges. The following precautions will be employed on an on-going basis.

Spill Prevention & Control Measures

To minimize the risk of spills or other accidental exposure of materials and substances to stormwater runoff, the following material management is to be used when working on site.

- Any materials stored on-site will be stored in a neat, orderly manner in their appropriate containers.
- Products will be kept in their original containers with the original manufacturer's label.
- Substances will not be mixed with one another unless recommended by the manufacturer.
- Manufacturers' recommendations for proper use and disposal will be followed.
- The contractor's supervisor will be issued this Guide to ensure proper use and disposal of materials.

Materials or substances listed below may be present on-site for maintenance and care should be taken to avoid spills:

• Petroleum Based Products

The following product-specific measures will be followed on-site:

- <u>Petroleum Products</u> All on-site vehicles will be monitored for leaks and receive preventative maintenance to reduce the chance of leakage.
- *Grass Clipping, Leaf Litter and Plant Debris* are to be removed from the property and not disposed on site.

APPENDIX A – Maintenance Checklists

- Bioretention Areas
- Infiltration Basin
- Underground Infiltration
- Porous Pavement
- Landscaping

Operation and Maintenance Checklist Oak Crest Cove Boat Ramp

Date:

Time:

Inspector:

Maintenance Item	Description	Maintenance (Y/N)
1, 2 & 3. Inlet Flume, Se	diment Forebay, and Forebay Overflow Structure	
Debris Cleanout	Remove all trash, leaf litter and debris from the inlet flume, forebay, and forebay overflow structure.	
Sediment/Organic Debris Removal	Check for clogging and sediment accumulation that impacts inflow and outflow. Remove and properly dispose of when sediment is >3" in the forebay. Remove/cut any vegetation that sprouts through voids in stone, pavement, or pavers.	
Erosion	Check for areas of erosion (gullies, animal burrowing, or overtopping). Repair as necessary and return to design grades.	
Actions to be taken:		
4. Bioretention Areas, Ir	nfiltration Basin, Perforated Pipe, Recharge Basin	
Debris Cleanout	Remove trash and debris from the surface.	
Erosion	Signs of erosion gullies, animal burrowing, or overtopping are observed. Repair as necessary.	
Sediment/Organic Debris Removal	Remove sediment accumulation and properly dispose when accumulation is greater than or equal to 3 inches.*	
	If standing water is observed in bioretention areas or infiltration basin for more than 48 hours after a storm event, rototill or aerate the bottom 6 inches to break up any hard- packed sediment, and re-plant as needed.	
Water Draining properly	Check for leaf litter, debris, and sediment accumulation in <u>overflow outlet structures</u> that impact inflow to underground infiltration features. If accumulation present, schedule cleaning.	
	Check for sediment accumulation and/or standing water that indicates clogging in the recharge basin and perforated pipe. If sediment or standing water is observed in the recharge basin for more than 48 hours after a storm event, clean out perforated pipe and recharge basin.	
Actions to be taken:		

Operation and Maintenance Checklist Oak Crest Cove Boat Ramp

Maintenance Item	Description	Maintenance (Y/N)
5. Overflow Structures:	Overflow Structures, Diversion Structure	
Debris Cleanout	Remove all trash, leaf litter and debris from the overflow structure.	
Sediment/Organic Debris Removal	Check for clogging and sediment accumulation that impacts inflow and outflow.	
Actions to be taken:	·	
Porous Pavement		
Debris Removal	Remove trash from paved and perimeter areas. Sweep surface.	
Vacuum	Vacuum surface to clean pores of debris and sediment with a commercial vacuum system.	
Structure	Repair cracking or other structural issues as found during inspection.	
Actions to be taken:		1
	General Site Maintenance	
Debris Removal	Remove trash from perimeter areas.	
Pet Waste Removal	Remove any pet waste from perimeter areas.	
Pavement Sweeping	Sweep road minimum once a year after spring thaw.	
Contributing drainage area	Confirm that contributing drainage area stabilized – stabilize as necessary.	
Snow Removal	Ensure snow piles do no block inlet structures and are not placed in the bioretention, infiltration basin, or on the porous pavement surfaces.	
De-Icing	Do not remove ice in the bioretention areas or infiltration basin. If needed on the porous pavement surfaces, use de- icing compounds with the least harmful chemicals. Avoid sanding the porous pavement or excessive salting.	
Actions to be taken:		

*Sediment shall be disposed of offsite in a pre-approved location.

Plantings Maintenance Checklist Oak Crest Cove Boat Ramp

Location:

Date:

Inspector:

Task	Description			
Cutting	 Cut with shears once a year in the early spring. Do not cut lower than 6". Blow out leaves and cuttings for easy removal. Remove cuttings so the bioretention area does not clog. 			
Mowing	 Mow twice a year or more frequently as needed with a mulching mower or weed whacker depending on the frequency of cutting. Bag clippings as needed and dispose of off site. Maintain a cutting height of 3" or greater. Leave the grass taller in the warmer months. Trim edges when necessary. 			
Weeding	 Weeding should be limited to invasive and exotic species, which can overwhelm the desired plant community.* Non-chemical methods including hand pulling and hoeing are recommended. Chemical herbicides are not allowed. 			
Monitoring	 Look for potential invasive species and identify potential disease. Remove and dispose of all invasive species.* (see weeding) 			
Watering	 During establishment or drought conditions, plants should be watered a minimum of once every seven to ten days. 			
Seeding	 Loam and re-seed bare spots with the specified seed mix as shown on the Planting Plan. 			
Plant Replacement	 Replace/replant diseases, unhealthy or dead plans to maintain a healthy plant community 			
Fertilizing	NONE			
Mulch	NONE			
Actions to be taken:				

*Invasive species shall be disposed of offsite in a pre-approved location. Species observed on site include multiflora rose, Asiatic bittersweet (*Celastrus orbiculatus*), shrub honeysuckle (*Lonicera sp.*), Japanese honeysuckle and border privet (*Ligustrum obtusifolium*).

"Mowed" Areas No "Mow" Areas (Bioretention Areas) All areas

APPENDIX B – Overall SCM Locations

APPENDIX C – Planting Plan

APPENDIX F – Pollutant Controls During Construction

POLLUTANT CONTROLS DURING CONSTRUCTION

1.1 Structural Practices

The following are the structural practices that will be implemented as part of the construction activity.

- <u>Visibility Fence/Sediment Silt Sock Barrier</u> will be installed prior to commencement of construction. The visibility fence will keep construction equipment within the limit of work, and the silt sock will be used on the downgradient portions of the limit of work to allow water to flow through it while keeping sediment on site. The Town will be informed upon their installation so that they may inspect these barriers prior to construction. Portions of these barriers will be replaced and/or repaired as necessary. Barriers will be installed parallel to land slope at the perimeter of the work site, as shown on the Plans. Details are provided in the Plans.
- <u>Silt Sacks (or approved equivalent)</u> will be installed at catch basins and following construction of the proposed overflow structures to prevent sedimentation during construction. The silt sack will be emptied/replaced and disposed of off-site if damage is observed.
- <u>Sediment Traps/Basins.</u> The bioretention area(s) will be graded to within one foot of design elevations until site is fully stabilized to capture sediment during construction. Heavy equipment will not be allowed to operate on the surface location where the systems are planned because soil compaction can adversely impact their long-term performance. Light earth-moving equipment will be used for excavation and construction of the systems. All excavated materials from the area will be removed and disposed of in an approved location. Additional sediment traps should be installed as shown on the plans and in additional locations as needed during construction. All sediment traps/basins will be inspected at least once every seven calendar days and immediately after storm events by the Construction Manager.
- <u>Construction Entrance</u> will be installed following pavement removal. All construction vehicles must use this access point to ensure sediment is not tracked off site.
- <u>Slope Stabilization</u> will occur immediately upon obtaining final grades as shown on the project site plans. Areas that fail to stabilize will be re-graded to final grade and stabilized as necessary. The amount of land disturbed will be minimized to reduce potential for erosion and sedimentation. Stabilization measures shall be initiated within 14 days following the end of construction at each portion of the site and as soon as practicable.
- <u>Pipe Slope Drain</u> will be installed to convey runoff from the existing catch basin/culvert infrastructure at the top of the steep slope and direct it to the sediment trap at the bottom of the slope. The purpose of this is to protect the slope and downgradient stormwater management elements, other site features, and Peter's Pond from erosion and sediment build up during construction.

The entire stormwater management system including pipes, structures, bioretention areas, and infiltration features will be inspected upon completion of construction. Sediment will be removed from all elements of the stormwater management system. All control measures must be installed and maintained in accordance with manufacturer's specifications, good engineering practices, and in accordance with this report (every seven calendar days and after storm events). If inspections show that a control has failed or been installed incorrectly, the Operator must replace or modify it within 24 hours.

1.2 Stabilization Practices

The amount of land disturbed during construction will be minimized to reduce the potential for erosion and sedimentation. Prompt surface stabilization will be provided to control erosion in areas where disturbances cannot be avoided during construction. Stabilization measures shall be initiated within 14 days following the end of construction at each portion of the site. Exceptions to this requirement are allowable when snow cover prevents the initiation of stabilization within 14 days, in which case such measures shall be undertaken as soon as possible.

Stabilization measures that will be, or may be, used during construction are described below:

- <u>Temporary Seeding</u> Temporary seeding of disturbed surfaces with fast-growing grasses (annual rye) to provide greater resistance to stormwater runoff and/or wind erosion for areas where construction has temporarily ceased.
- <u>Permanent Seeding</u> Permanent seeding of surfaces with vegetation, including but not limited to grass, trees, bushes, and shrubs, to stabilize the soil. Establishing a permanent and sustainable ground cover at a site stabilizes the soil while reducing the sediment content in runoff.
- <u>Permanent Planting</u> –establish all planting as required at the completion of the project.
- <u>Erosion Control Blankets -</u> install erosion control blankets along all slopes greater than 3:1.
- <u>Mulching</u> materials, including but not limited to hay, grass, woodchips, straw, and gravel will be placed on the soil surface to cover and hold in place disturbed soils.

Temporary seeding or other soil stabilization measures will be provided where construction activities have ceased at the site. Topsoil stockpiles will be temporarily seeded or covered to prevent erosion and will be surrounded with silt fence or silt sock. When the site's final grade has been established, permanent vegetation will be planted on the disturbed areas. The vegetation will consist of grass, shrubs, bushes, and trees in the locations indicated on the plans.

1.3 Other Types of Controls

Additional controls/practices will be undertaken to reduce pollution in stormwater runoff flows which include, but are not limited to, control of off-site mud tracking from construction site, dust suppression, proper sanitary waste disposal, earthwork procedures timed and conducted in manners aimed to minimize erosion and sedimentation, snow removal plans, proper management of waste materials, proper management of hazardous waste, proper material stockpiling, and spill prevention and control measures.

- <u>Dust Suppression</u> Water sprays shall be used to control dust during extended dry periods during construction.
- <u>Earthwork</u> The exposure of disturbed surfaces to stormwater and potential stormwater erosion will be minimized by well-organized earthwork procedures. Stabilization procedures shall be undertaken in accordance with this report. Grubbing during wet seasons will be avoided if feasible.
- <u>Snow Removal Plan</u> Plowed snow collected from the roadway and parking areas will be deposited onto free draining, pervious surfaces, away from the sites drainage conveyance structures to maximize infiltration.
- <u>Waste Materials</u> Dumpsters rented from a licensed solid waste management company will be used to store solid waste and debris that cannot be recycled, reused or salvaged. The dumpsters will meet all local and state solid waste management regulations. Dumpsters will be covered when refuse is not being directly deposited or withdrawn from them. Potentially hazardous wastes will be separated from normal wastes, including segregation of storage areas and proper labeling of containers. Removal of all waste from the site will be performed by licensed contractors in accordance with applicable regulatory requirements and disposed of at either local or regional approved facilities. Waste materials will not be buried on-site. All site personnel will be instructed regarding the correct procedures for waste disposal. Notices stating these procedures will be posted at the site. Solvents and flushing materials used during construction and pre-operational cleaning will be provided, handled, managed, and removed by the contractor for appropriate off-site disposal.
- <u>Hazardous Waste Materials</u> Any disposal of hazardous materials will be completed using the required paperwork. Copies will be provided to the Engineer and to the city.
- <u>Spill Prevention and Control Measures</u> To minimize the risk of spills or other accidental exposure of materials and substances to stormwater runoff, the following material management practices will be used throughout the project:
 - \circ $\;$ An effort will be made to store only enough products required to do the job.

- All materials stored on-site will be stored in a neat, orderly manner in their appropriate containers and, if possible, under a roof or other enclosure.
- Products will be kept in their original containers with the original manufacturer's label.
- Substances will not be mixed with one another unless recommended by the manufacturer.
- Whenever possible, the maximum amount of a product will be used before disposing of the container.
- Manufacturers' recommendations for proper use and disposal will be followed.
- The site superintendent will conduct daily inspections to ensure proper use and disposal of materials.

To reduce the risk associated with hazardous materials used on the site, the following practices will be used:

- Products will be kept in original containers unless they are not resealable.
- Original labels and material safety data sheets will be retained and kept on-site; they contain important product information.
- If surplus product must be disposed of, manufacturers' or local and state recommended methods for proper disposal will be followed.
- <u>Materials List</u> Materials or substances listed below are expected to be present on-site during construction:

-	Concrete	-	Fertilizers
-	Asphalt	-	Petroleum Based Products
-	Paints (enamel and latex)	-	Cleaning Solvents
-	Metal Studs	-	Wood
-	Concrete	-	Tar

- Sealants - Adhesives

The following product-specific practices will be followed on-site:

<u>Petroleum Products</u> - All on-site vehicles will be monitored for leaks and receive preventative maintenance to reduce the chance of leakage. Petroleum products will be stored in tightly sealed containers which area clearly labeled. Any asphalt substances used on-site will be applied according to the manufacturers' recommendations. <u>Paints</u> – All containers will be tightly sealed and stored indoors when not required for use. Excess paint will not be discharged to the storm sewer system but will be properly disposed of according to the manufacturers' instructions or state and local regulations.

<u>Concrete Trucks</u> – Concrete trucks will not be allowed to wash out or discharge surplus concrete or drum wash water on the site.

In addition to the good housekeeping and material management practices discussed in the previous sections of this plan, the following practices will be followed for spill prevention and cleanup:

- Manufacturers' recommended methods for spill cleanup will be clearly posted, and site personnel will be made aware of the procedures and location of the information and cleanup supplies.
- Materials and equipment necessary for spill cleanup will be kept in the material storage area onsite. Equipment and materials will include, but not be limited to, brooms, dust pans, mops, rags, gloves, goggles, speedi-dry, sand, sawdust, and plastic and metal trash containers specifically for this purpose.
- All spills will be cleaned up immediately after discovery. Spills large enough to reach the storm water system will be reported to the National Response Center at 1-800-424-8802.
- The spill area will be kept well ventilated and personnel will wear appropriate protective clothing to prevent injury from contact with a hazardous substance.
- Spills of toxic or hazardous material will be reported to the appropriate state or local government agency, regardless of the size.
- The site superintendent responsible for the day-to-day site operations will be the spill prevention and clean-up coordinator. He will designate at least three other site personnel who will receive spill prevention and cleanup training. These individuals will each become responsible for a particular phase of prevention and cleanup. The names of responsible spill personnel will be posted in the material storage area and in the on-site office trailer.

APPENDIX G – Site Plans